
Universal Distant Reading through Metadata Proxies with ArchiveSpark

Helge Holzmann
L3S Research Center

Appelstr. 9a
30167 Hannover, Germany

holzmann@L3S.de

Vinay Goel
Internet Archive

300 Funston Avenue
San Francisco, CA 94118, USA

vinay@archive.org

Emily Novak Gustainis
Center for the History of Medicine

Francis A. Countway Library of Medicine
10 Shattuck Street

Boston, MA 02115, USA
Emily Gustainis@hms.harvard.edu

Abstract—Digitization and the large-scale preservation of
digitized content have engendered new ways of accessing and
analyzing collections concurrent with other data mining and
extraction efforts. Distant reading refers to the analysis of entire
collections instead of close reading individual items like a single
physical book or electronic document. The steps performed in
distant reading are often common across various types of data
collections like books, journals, or web archives, sources that
are very valuable and have often been neglected as Big Data.

We have extended our tool ArchiveSpark, originally de-
signed to efficiently process Web archives, in order to support
arbitrary data collections being served from either local or
remote data sources by using metadata proxies. The ability
to share and reuse researcher workflows across disciplines
with very different datasets makes ArchiveSpark a univer-
sal distant reading framework. In this paper, we describe
ArchiveSpark’s design extensions along an example of how
it can be leveraged to analyze symptoms of Polio mentioned in
journals from the Medical Heritage Library.

Our experiments demonstrate how users can reuse large
portions of their job pipeline to accomplish a specific task
across diverse data types and sources. Migrating an ArchiveS-
park job to process a different dataset introduces an additional
average code complexity of only 4.8%. Its expressiveness, scal-
ability, extensibility, reusability, and efficiency has the potential
to advance novel and rich methods of scholarly inquiry.

Keywords-Digital Libraries; Web Archives; Distant Reading

I. INTRODUCTION

Books, journals, and other traditional print media
items are being made available outside of physical li-
braries at a rapidly increasing pace. With the falling cost
of high-quality digitization technologies, organizations such
as Google and the Open Content Alliance are scanning
books and other physical media on a massive scale and
digitized content providers, such as Internet Archive, The
Digital Public Library of America, HathiTrust, and Euro-
peana, are enabling access to rare books, manuscripts, and
other special collection materials otherwise available only at
geographically sparse locations. Open access publishing and
Creative Commons licensing are moving scholarly output in
front of the paywall. In the case of the Web, organizations

This work is partly funded by the European Research Council under
ALEXANDRIA (ERC 339233)

like the Internet Archive have developed automated crawlers
that periodically capture Web content to ensure continued,
public access to this dynamic and ephemeral content. The
captured Web resources are timestamped to form persistent
snapshots that are made accessible using tools like the
Wayback Machine1.

Given the sheer volume and variety of many of these
collections, they may very well be considered Big Data,
but are still widely neglected in this field. While digitized
records can be read or viewed individually, their Big Data
nature allows for completely new and interesting ways of
access and analysis. Instead of close reading every single
record, the digital collection can be filtered down by specific
features, enriched, and aggregated for useful statistics in a
distant reading manner [1].

Distant reading refers to the technique of analyzing large
corpora of text documents without close reading every single
one. Schulz [2] describes it as “understanding literature
not by studying particular texts, but by aggregating and
analyzing massive amounts of data”. The idea was proposed
by Moretti [1] as a way to analyze texts systematically,
using statistical and quantitative methods on texts, which
are often expressed as networks of terms, where the edges
represent the relationships among the terms. While it was
originally meant to analyze literary fiction, we conceive
it as a more general tool to derive information from big
collections without reading single documents. Consider the
example of Polio in a collection of medical articles. Using
distant reading methods, we intend to analyze the most
common symptoms of Polio and the body parts it affects.
One way of doing this is to count how often the terms of
interest occur in the documents mentioning Polio.

All of the above mentioned data sources have an im-
portant trait in common: they are maintained by libraries
and archives, where records are commonly organized
in metadata indexes. In Holzmann et al. [3], we pre-
sented ArchiveSpark2, a scalable, expressive, and extensible
framework, based on Apache Spark, that leverages such
metadata records as lightweight data proxies to provide an

1http://archive.org/web
2http://github.com/helgeho/ArchiveSpark

http://archive.org/web
http://github.com/helgeho/ArchiveSpark

url1, �me1, status, mime, ...

url1, �me2, status, mime, ...

url1, �me3, status, mime, ...

url1, �me4, status, mime, ...

url2, �me1, status, mime, ...

url2, �me2, status, mime, ...

url3, �me1, status, mime, ...

url3, �me2, status, mime, ...

url3, �me3, status, mime, ...

url4, �me1, status, mime, ...

url4, �me2, status, mime, ...

WARC/1.0
url1, �me2
Content-Type: text/html
...
<html>...

WARC/1.0
url1, �me3
Content-Type: text/html
...
<html>...

WARC/1.0
url2, �me1
Content-Type: text/html
...
<html>...

WARC/1.0
url2, �me3
Content-Type: text/html
...
<html>...

WARC/1.0
url3, �me1
Content-Type: text/html
...
<html>...

WARC/1.0
url1, �me3
Content-Type: text/html
...
<html>...

WARC/1.0
url4, �me1
Content-Type: text/html
...
<html>...

WARC/1.0
url4, �me2
Content-Type: text/html
...
<html>...

WARC/1.0
url2, �me2
Content-Type: text/html
...
<html>...

WARC/1.0
url3, �me2
Content-Type: text/html
...
<html>...

(W)ARC

CDX

Enrichments

HTML
NER

Links

POS-Tagger

etc.

your tools

Wikifier

 select / lter
meta data

enrich with
headers / content

apply
enrichments

{JSON}

output
 lter lter

UNIFIED DATA MODELDATA SPECIFICATIONS

Figure 1: ArchiveSpark’s selection and enrichment ap-
proach with variable metadata and data sources (cp. [3]).
Dashed boxes illustrate the extensions and generalizations of
the original approach for Web archives, towards a universal
distant reading framework.

easy and efficient way to process Web archives. Web archives
are typically large collections containing webpages and their
embedded resources. To support lookups of a single records,
Web archiving institutions generate and maintain indexes
that contain pointers to the archived records. ArchiveSpark
exploits these pre-existing index records, originally created
for close reading scenarios, in order to support efficient
filtering and processing on the complete dataset. Third-party
tools can be easily integrated with ArchiveSpark to extract
and/or derived new information to be used in distant reading
workflows that are described in a rather declarative manner.

However, these workflows are not exclusive to the re-
search of Web archives. They can, in fact, be applied to any
digital collection. For example, the use of a natural language
processing tool to annotate parts of speech in textual content
is not limited to text from webpages or books but can be
applied to any textual content regardless of its source. With
that in mind, we redesigned and extended ArchiveSpark
as illustrated in Figure 1, retaining and extending its two-
step data access mechanism through metadata proxies, like
indexes or search results. As shown in previous work, this
approach is faster than alternative approaches in scenarios
where only subsets of big data holdings are of interest,
without depending on additional data stores [3].

In this paper, we describe the new concepts and extensions
to ArchiveSpark that allows for various metadata sources
and datasets, such as journals at the Medical Heritage
Library3 as well as Web archives loaded remotely from the
Internet Archive’s Wayback Machine4.

II. CONCEPTS AND ARCHITECTURE

ArchiveSpark provides efficient data access for use cases
related to studying Web archives by leveraging metadata
indexes [3]. In this section, we discuss the extension points

3http://www.medicalheritage.org
4http://web.archive.org

of this approach and detail our new generic architecture to
open it up to a wider variety of usage scenarios.

A. Beyond Web Archives

ArchiveSpark was designed as a framework for process-
ing Web archives where the loaded collections consisted
of metadata records stored in CDX (crawl/capture index)
files, with the corresponding data records stored in (W)ARC
(Web archive files). ArchiveSpark implemented the logic to
load and parse CDX files as part of its core. When a user
performed a task necessitating access to the original data
records, it seamlessly read this data from the corresponding
(W)ARC files. This random access pattern of reading data
was supported by the inclusion of data record pointers
(filename with record offset and record length) in the CDX
metadata records.

In [3], we demonstrated the benefits of this two-step
approach of first accessing metadata records as proxies of
the corresponding data records and only accessing data
records in a second step when required (cp. Figure 1). The
approach was shown to be highly efficient for common
data analysis tasks and there emerged a natural demand to
implement this approach for other data types and sources.
Given that, we laid out the following goals: the ability to
load Web archive data from different locations, such
as directly from the Wayback Machine without needing the
records to be available on-site, and the ability to support
non-Web archive data, like digitized books and journals.
The only requirement was that all these collections would
feature the same metadata/data record characteristics as
the CDX/(W)ARC collections, where the metadata record
included a pointer to the corresponding data record.

Remote access: Web archives are often enormous col-
lections with sizes in the order of hundreds of terabytes
and not every research institution has the capacity or the
infrastructure to maintain their own local Web archive.
However, there are institutions, such as the Internet Archive,
that provide public access to their holdings. Thus, one of
our extensions to ArchiveSpark was to support remote
archives. This extension included the ability to load data
not just from local disk but using different protocols, such as
loading data over HTTP directly from the Wayback Machine.
For the required metadata, queries can be made to the
Internet Archive’s CDX Server5 that provides access to the
metadata of every capture in the Web archive. An advantage
of querying such a service to load metadata records is
the ability to prefilter records based on criteria supported
by the query service. We note that in the case of CDX
Server, the retrieved metadata records do not include location
information for the corresponding (W)ARC records. Access
to the data records is through the Wayback Machine service

5https://github.com/internetarchive/wayback/tree/master/wayback-cdx-
server

http://www.medicalheritage.org
http://web.archive.org
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server

Figure 2: ArchiveSpark architecture.

by using the unique tuple key of URL and timestamp. With
our extensions to ArchiveSpark, we can now support any
possible combination of metadata and data record sources.
By not requiring an ArchiveSpark user to possess a local
copy of the data, we open up broader opportunities for data
processing by multiple parties.

Interoperability: The aforementioned access patterns are
not exclusive to Web archives but can be generalized to var-
ious other types of data as well. Examples include digitized
books and journals, which may be stored in the form of files
in a specific data format or made available through a public
Web service and are therefore ready for being analyzed in
a distant-reading manner with ArchiveSpark. We wanted
ArchiveSpark to be able to make use of any query service,
e.g., databases and search engines, that enables the retrieval
of metadata with pointers to the corresponding data records.
Furthermore, we sought interoperability to reuse existing
components of ArchiveSpark like tools that have been
bundled as modules to be used with Web archives. For
instance, a sentiment analysis tool that has been prepared
for use with ArchiveSpark for Web archives should be
usable with any text, regardless of whether it is part of a
Web archive or a book corpus or any other collection. By
providing this flexibility, ArchiveSpark greatly facilitates
sharing of code among researchers, even across different
disciplines, as we show by our experiments in Sections IV.

B. Architecture Extensions

ArchiveSpark’s new flexibility is achieved by the intro-
duction of data specifications (DataSpecs). A DataSpec
defines how metadata records are loaded and how they are
associated to the corresponding data items. It encapsulates
the code to load and access metadata as well as correspond-
ing data records, while the details are abstracted away from
the users. These isolated objects allow for easy sharing of
datasets as well as data processing pipelines in the form of
recipes, which are defined in a clean, declarative manner
with the associated complex logic defined separately. At the
same time, a given DataSpec is fully customizable by its
developer and may be parameterized, which allows the user
to easily specify required information, such as a data path
or other types of location pointers. Figure 2 illustrates how
DataSpecs fit into ArchiveSpark’s architecture and play
together with the other components.

Once ArchiveSpark is instructed to load a given
DataSpec, the corresponding dataset is presented to the
user as a collection of EnrichRoot records, the entry
points into ArchiveSpark’s data model. The initialization
of such records is part of the used DataSpec. For in-
stance, while a DataSpec for Web archives creates records
that hold the corresponding CDX record information, one
for book records will contain other kinds of metadata,
like a book’s title and author. Additionally, the specialized
EnrichRoot records provide access to the actual data as
defined by the used DataSpec.

Starting from there, ArchiveSpark’s data model consti-
tutes a hierarchical tree structure with EnrichRoot as
the root node. Each node in this tree model is of type
Enrichable and holds a value (for the root node, this
is typically the metadata record), as well as zero or more
child nodes with the child nodes representing either extracted
or derived data based on the parent’s value. Hence, the
hierarchy of the data encodes its lineage, which corresponds
to the dependency hierarchy of the applied functions.

Enrich functions (EnrichFunc) describe transforma-
tions that can be applied to the values stored in ArchiveS-
park’s data model. They encapsulate arbitrary logics
and even third-party tools. Similar to a DataSpec, an
EnrichFunc is used as an isolated blackbox in a declar-
ative manner and can be configured by the user. All enrich
functions, except for the root, have a dependency that
determines their input, i.e., the dependency function’s output
will be the input of a DependentEnrichFunc. The very
first RootEnrichFunc in such a dependency chain is in
charge of loading the data of a record with accesses provided
by the EnrichRoot.

To reuse and share an EnrichFunc, users can easily
change its dependencies. As an example, consider a function
that has been defined to depend on the body text of a
webpage, i.e., its direct dependency is the EnrichFunc
that extracts this text from the webpage. By changing this
dependency dynamically to the function that extracts the title
of a webpage, the same EnrichFunc will now operate on
the title as input. Similarly, by changing the root dependency,
a EnrichFunc can now by universally applied, regardless
of the input data type, i.e., a function that has been developed
to extract entities from text is now applicable to any text,
regardless of whether it is text on a webpage or in a book.

III. EXPERIMENTS AND EVALUATION

The aim of our experiments is to evaluate the applicability
of the ArchiveSpark framework with the presented exten-
sions to different data types and sources. In the following
we outline an example to study the occurrence of Polio
symptoms in a journal collection from the Medical Heritage
Library (MHL). We then quantify commonalities of this job
with similar tasks as well as different data types and sources,
when defined with ArchiveSpark.

source records accessed # here

raw data all > 170,000
meta files collection 3,148
full-text matches 2,027

Table I: Comparison of accessed records with different
metadata sources for the analysis of documents mentioning
Polio in State Medical Society Journals in the Medical
Heritage Library.

MHL is a digital curation collaborative effort among some
of the world’s leading medical libraries. It promotes free
and open access to quality historical resources in medicine.
The goal of the MHL is to provide the means by which
readers and scholars across a multitude of disciplines can
examine the interrelated nature of medicine and society,
both to inform contemporary medicine and strengthen our
understanding of the world. The MHL’s growing collection
of digitized medical rare books, pamphlets, journals, and
films number in the tens of thousands, with representative
works from each of the past six centuries, all of which
are available through the Internet Archive and discoverable
through an advanced full-text search interface6.

A. Example Study: Polio

In this example we would like to demonstrate a possible
distant-reading scenario, using ArchiveSpark’s new con-
cepts as introduced in Section II-B with a non-Web archive
dataset. For that, we exemplarily analyze a subset of the
entire MHL corpus with more than 170,000 documents,
the State Medical Society Journals collection, to study
symptoms and parts of the body mentioned together with
Polio. The required data specifications for this tasks are
provided in a public open-source project7, which currently
includes three DataSpecs for different combinations of
metadata and data source:

– MhlHdfsSpec (with local data): Metadata and data
records loaded from local (distributed) files.

– MhlHdfsSpec (with remote data) Local metadata
with contents on remote servers loaded on demand.

– MhlSearchSpec MHL’s search system is queried for
metadata, records are loaded from the Internet Archive.

Table I gives an overview of the records accessed when
using the different metadata sources as defined by these
specs. If we worked on the raw data, i.e., not using
ArchiveSpark, we would need to scan all MHL documents.
By incorporating local metadata files (MhlHdfsSpec) as
metadata proxies to filter for the collection of interest, we
can significantly reduce the number of accessed records.
With the use of full-text search (MhlSearchSpec), we
receive an even stronger gain in efficiency as only those

6http://mhl.countway.harvard.edu/search
7https://github.com/helgeho/MHLonArchiveSpark

records that match our criterion will be accessed by
ArchiveSpark.

To begin our analysis, we load the dataset of interest,
using ArchiveSpark, by passing in a data specification that
defines a query to MHL’s full-text search system (rdd
denotes the work representation of the dataset, sc refers
to the Apache Spark Context of this job, which is given):

val query = MhlSearchOptions(
query = "polio",
collections = MhlCollections
.Statemedicalsocietyjournals)

val rdd = ArchiveSpark
.load(sc, MhlSearchSpec(query))

After this point, all instructions are not specific to MHL
anymore. By simply changing the loading part, the same
analysis can be run on any similar dataset.

In the next steps, we define our set of symptom-related
terms that we would like to count in the documents, followed
by an in-line definition of the required enrich function. This
EnrichFunc, called symptoms, depends on the lower
case version of the text and enriches it with the subset of
symptoms contained in the text. Only at this point does
ArchiveSpark integrate the actual text for the records in the
selected dataset, which is included in the metadata proxies.

val symptomSet = Seq("extremity",
"neck", "vomiting", "fever", "headache",
"irritability", "abdominal", "lethargy")

val symptoms = LowerCase
.map("symptoms") {text: String =>
symptomSet.filter(text.contains)}

val enriched = rdd.enrich(symptoms)

By printing a record of this enriched dataset in JSON
format (enriched.peekJson), we can see the lineage
of the applied enrichments with symptoms contained in this
document (abridged):

{
"text": {
"lowercase": {
"symptoms": [
"headache", "neck", ...

]
}

}
}

Finally, the identified symptoms are counted and aggre-

http://mhl.countway.harvard.edu/search
https://github.com/helgeho/MHLonArchiveSpark

gated among all documents, as visualized in Figure 3:

val symptomCounts = enriched
.flatMapValues(symptoms).countByValue

IV. INTEROPERABILITY

The primary goal of our extensions to ArchiveSpark
was to make it an universal tool for working with digital
library collections. This entailed providing compatibility
with different types of data collections and supporting the
sharing of workflows across disciplines. Users would be
able to easily rerun their analysis or reuse tools that have
been prepared for ArchiveSpark on their own computing
infrastructure, specific to their research needs. ArchiveS-
park achieves this by abstracting away, to a large degree,
platform, tool and data specific parts of the workflow so
that the code can primarily focus on implementing the user’s
task. Implementation details are encapsulated as part of core
ArchiveSpark or in separate modules, i.e., DataSpecs and
EnrichFuncs (s. Sec II-B).

1) Experimental Setup: Measuring the complexity of
code is not a straight-forward process as it needs to guard
against variations in coding style and unnecessarily complex
code structures. Many metrics exist that either try to capture
the length of the source code, e.g., lines of code, or its
structure, e.g., cohesion / coupling, nicely compared and
evaluated by Yu and Zhou [4]. However, none of them meets
our needs of measuring the reduction of code when reusing
data processing workflows with ArchiveSpark for different
data sources or in similar jobs. We are rather interested in
the number of function calls that are required to define a
workflow (cp. Sec. III-A). This can be assessed from the
perspective of ArchiveSpark in two levels: (1) what is
abstracted away from the user and hence, taken care of by
ArchiveSpark, i.e., internal, (2) what does the user need to
write in order to specify a job, i.e., external function calls.

We are interested in function calls that originate in one
of these layers with the target of invocation outside the
layer. Such invocations were analyzed using Java’s included
profiling tool HPROF8 with a stack depth of 10 (Java
parameter -agentlib:hprof=depth=10).

The reusability of code among jobs was measured by
treating all identified across-abstraction-layer calls of a job
as sets of the target functions suffixed with numbers for each
call. The particular data is irrelevant for this evaluation as
we intend to focus only on job definitions, the same function
calls are counted only once, irrespective of the parallelism
of a job or how big the data is.

Evaluated Workflows. The following jobs have been
analyzed in our evaluation:

1) MHL Smoke: minimalistic example with MHL’s
search and content access.

8http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

ex
tr
em
ity

ne
ck

vo
m
iti
ng

fe
ve
r

he
ad
ac
he

ir
ri
ta
bi
lit
y

ab
do
m
in
al

le
th
ar
gy

1400

1500

1600

1700

1800

1900

2000

2100

#
d
o
c
s

Figure 3: Distribution of symptoms and affected body parts
in documents mentioning Polio in State Medical Society
Journals at the Medical Heritage Library.

2) MHL Polio: example from Sec. III-A.
3) MHL E. Search: MHL’s API to filter by collection,

counting entities instead of symptoms9.
4) MHL E. Local: metadata and content from local files,

counting entities.
5) MHL E. Remote: local metadata and remote content

from the Internet Archive, counting entities.
6) Web E. Local: Web archive filtered by domain and

year with local files (CDX/WARC), counting entities.
7) Web E. Wayb. CDX server to filter by domains,

content from Wayback Machine, counting entities.

2) Evaluation Results: Table II gives an overview of
the extent of reusability among the job workflows in our
evaluation. This is quantified by the number of additional
function calls needed when transforming a small job, serving
as a template, to a larger one. As an example, compare
Mhl E. Search and Web E. Wayb, both counting mentioned
entities in the corresponding collections. As the latter one
is smaller, we consider it to be our starting point for
transforming it to now using MHL documents as the data
source instead of web captures from the Wayback Machine.
This process requires 5 additional function calls in the job
definition, while internally the complexity is increased by
224. That is only 2% in this case and overall 4.8% on
average, which is a very small fraction of the abstracted
internal counterparts.

Thus, with ArchiveSpark we can reuse large parts of data
pipelines to accomplish a certain job, even across different
data sources. This makes the case for sharing of analysis
and distant reading workflows in the form of recipes as well
as modules, such as DataSpecs and EnrichFuncs, to
be reused among researchers and disciplines.

9https://github.com/helgeho/FEL4ArchiveSpark

http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
https://github.com/helgeho/FEL4ArchiveSpark

intern. / extern. MHL Polio MHL E. Search MHL E. Local MHL E. Remote Web E. Local Web E. Wayb.

MHL Smoke 67 / 14 (21%) 136 / 14 (10%) 195 / 16 (8%) 182 / 16 (9%) 225 / 17 (8%) 194 / 17 (9%)

MHL Polio 71 / 3 (4%) 217 / 7 (3%) 199 / 7 (4%) 195 / 7 (4%) 206 / 7 (3%)

MHL E. Search 247 / 4 (2%) 226 / 4 (2%) 214 / 5 (2%) 224 / 5 (2%)

MHL E. Local 24 / 0 (0%) 158 / 3 (2%) 129 / 3 (2%)

MHL E. Remote 148 / 3 (2%) 122 / 3 (2%)

Web E. Local 87 / 1 (1%)

Table II: Pairwise added complexity among jobs with respect to external user code and internal function calls.

V. RELATED WORK

We presented a comprehensive overview of related
works on Web archive access methods when we published
ArchiveSpark in Holzmann et al. [3]. Back then, we argued
that specialized approaches like search engines for Web
archives are not suitable for building research corpora and
detailed data analysis, as their filtering capabilities are not
flexible enough and limited to pre-defined lookups. With the
new design concepts introduced in Section II, ArchiveSpark
can now make use of retrieval systems, such as Tempas
(Temporal Archive Search) [5, 6, 7] to pre-filter records,
as demoed in [7]. This ability of ArchiveSpark to plug in
existing systems and its generalized support across different
data types and sources makes it a universal tool for distant
reading and to the best of our knowledge, it is the first one
of its kind. A good overview of the related works in distant
reading from the visual analytics perspective for Digital
Humanities has been published by Jänicke et al. [8]. The
integration of similar concepts with search was discussed
by Jackson et al. [9], by providing visualizations on top of
traditional Web search results list to support scholarly ac-
tivities. Although very convenient, such an approach would
require an additional index and is again limited by the pre-
built capabilities of such a system.

Looking at the field of Big Data, ArchiveSpark may be
of use for as well as benefit from various related works.
Maemura et al. [10] presented a framework to document the
research process in Web archives, contributing to a better
understanding of the findings and their provenance, in order
to reuse of data, methods, and workflows. ArchiveSpark
provides a technical solution to this by enabling a rather
declarative description of data processing workflows that
can be reused among different datasets, even beyond Web
archives. This supports new processes to work with big
data across teams and projects in coordination as well as
data sharing, as sought by Saltz [11]. At the same time,
we tackle interoperability challenges, widely present when
dealing with Big Data [12].

VI. CONCLUSION AND OUTLOOK

ArchiveSpark was originally developed as a tool for
use by scholars to access and work with Web archives.

With the extensions presented in this paper it has been
extended to serve as a universal tool for data analysis and
distant reading across different data types and sources. We
note that all advantages and features of the first version
of ArchiveSpark, e.g., gains in performance through the
inclusion of metadata and the implicit lineage documentation
of derived information, have carried over to this new version.

Our experiments show the extent of code reusability
achieved by ArchiveSpark. On average, swapping in new
data sources and tools on shared workflows results in an
added complexity of only 4.8% compared to the internal in-
struction set of our framework. This advantage of reusability
provided by ArchiveSpark can be exploited in the future to
provide recipes for different analysis tasks that can be easily
customized for individual needs.

REFERENCES

[1] F. Moretti, Distant Reading. Verso Books, 2013.
[2] K. Schulz, “What is distant reading,” The New York Times,

vol. 24, 2011.
[3] H. Holzmann, V. Goel, and A. Anand, “ArchiveSpark: Ef-

ficient Web Archive Access, Extraction and Derivation,” in
JCDL’16.

[4] S. Yu and S. Zhou, “A survey on metric of software com-
plexity,” in ICIME’2010.

[5] H. Holzmann and A. Anand, “Tempas: Temporal Archive
Search Based on Tags,” in WWW’16.

[6] H. Holzmann, W. Nejdl, and A. Anand, “On the Applicability
of Delicious for Temporal Search on Web Archives,” in
SIGIR’16.

[7] ——, “Exploring web archives through temporal anchor
texts,” in WebSci’17.

[8] S. Jänicke, G. Franzini, M. F. Cheema, and G. Scheuermann,
“On close and distant reading in digital humanities: A survey
and future challenges,” Proc. of EuroVisSTARs, pp. 83–103,
2015.

[9] A. Jackson, J. Lin, I. Milligan, and N. Ruest, “Desiderata for
exploratory search interfaces to web archives in support of
scholarly activities,” in JCDL’16.

[10] E. Maemura, C. Becker, and I. Milligan, “Understanding
computational web archives research methods using research
objects,” in BigData’16.

[11] J. S. Saltz, “The need for new processes, methodologies and
tools to support big data teams and improve big data project
effectiveness,” in BigData’15.

[12] A. Kadadi, R. Agrawal, C. Nyamful, and R. Atiq, “Chal-
lenges of data integration and interoperability in big data,” in
BigData’14.

	Introduction
	Concepts and Architecture
	Beyond Web Archives
	Architecture Extensions

	Experiments and Evaluation
	Example Study: Polio

	Interoperability
	Experimental Setup
	Evaluation Results

	Related Work
	Conclusion and Outlook

