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ABSTRACT
Web archives are a valuable resource for researchers of vari-
ous disciplines. However, to use them as a scholarly source,
researchers require a tool that provides efficient access to
Web archive data for extraction and derivation of smaller
datasets. Besides efficient access we identify five other ob-
jectives based on practical researcher needs such as ease of
use, extensibility and reusability.

Towards these objectives we propose ArchiveSpark, a
framework for efficient, distributed Web archive processing
that builds a research corpus by working on existing and
standardized data formats commonly held by Web archiv-
ing institutions. Performance optimizations in ArchiveS-
park, facilitated by the use of a widely available metadata
index, result in significant speed-ups of data processing. Our
benchmarks show that ArchiveSpark is faster than alterna-
tive approaches without depending on any additional data
stores while improving usability by seamlessly integrating
queries and derivations with external tools.

CCS Concepts
•Information systems → Extraction, transformation
and loading; •Applied computing→ Digital libraries
and archives;
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1. INTRODUCTION
A significant portion of the record of our society exists

exclusively on the Web. Web archives aim to capture and
preserve this record. Today, a large number of libraries,
universities, and cultural heritage organizations have Web
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archiving programs [1], with a 2011 survey reporting 42 dif-
ferent Web archiving initiatives across 26 countries [2]. With
greater availability of Web archives and increasing recogni-
tion of their importance, a growing number of historians, so-
cial and political scientists, and researchers from other disci-
plines see them as rich resources for their research [3]. How-
ever, as Web archives grow in scope and size, they present
unique challenges for creating tools and access methods for
researchers.

One of the fundamental tasks in using Web archives for
research is corpora building. This task involves the selection
and filtering of subsets, grouping and aggregation of records
of interest and the extraction and derivation of new data (cp.
Sec. 2). Consequently, there is a need for a framework that
provides this functionality for efficiently constructing cor-
pora out of the original archived collection. However, only
providing fast access to the underlying collection is not suffi-
cient. The framework needs to tackle a number of objectives
driven by practical requirements (s. Sec. 4.3), like simplic-
ity, expressiveness, extensibility and the ability to produce
reusable, well-structured output.

We address these objectives by proposing ArchiveSpark, a
framework for distributed Web archive processing based on
Apache Spark (s. Sec. 5). By developing a tool solely based
on standard file formats, we achieve the distinct advantage of
institutions being able to easily share and apply the corpus
generation specification across different collections. Towards
providing efficient access, ArchiveSpark makes use of a meta-
data index (CDX) that is widely used by other tools in the
domain of Web archiving. The CDX provides a lightweight
representation comprised of metadata from all records in an
archive. We achieve efficiency of access by exploiting the
CDX to select records of interest before accessing the origi-
nal archived content from disk. We also deliver substantial
speed-ups by using lightweight representations of records to
enhance performance of distributed operations, like group-
ing and aggregation, unlike existing approaches that oper-
ate on much larger raw inputs. More specifically, rather
than starting with all archived records and stripping them
down, we operate on lightweight representation of records
from the CDX and iteratively extend it as needed. We con-
sequently observe large improvements in efficiency as we are
able to minimize expensive disk operations involved as the
researcher modifies and refines her requirements.

We compare and contrast our system with two alternative
approaches and perform benchmarks to show differences in
speed for select scenarios (s. Sec. 6). The benchmarks show
that ArchiveSpark is faster than a similar approach that
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does not make use of the metadata index in the selected
scenarios, which we aim at. Also, depending on the task,
ArchiveSpark is even faster than a method of filtering based
on HBase, a distributed database system, without the space
and time overhead of ingesting and storing the archived data
into a database.

ArchiveSpark is fully open-source and contributions to ex-
tend its functionality are very much appreciated. For this
reason, we provide convenient extension points and an ar-
chitecture that makes it easy to apply third-party tools to
create custom derivatives from Web archives as part of an
ArchiveSpark job specification. The working source code
with the functionality that we provide out-of-the-box is avail-
able for open access:
https://github.com/helgeho/ArchiveSpark

2. USE CASE
In order to use Web archives as a scholarly source for sci-

entific research, a required first step in most cases is the
extraction of a well-defined corpus to work with [3, 4]. Sci-
entists typically focus on a temporal and/or a topical subset
of the archived data within the scope of their research ques-
tion. In the following example, we consider five steps to
be taken by a political scientist who wants to analyze sen-
timents and reactions on the Web from a previous election
cycle.

Step 1: The researcher would need to define and extract
a specific Web collection related to her research. In this
case, she would only need websites that were archived in
the time period of interest. However, this time-based or
longitudinal filter alone would result in too many candidate
websites as most Web archives are not topically organized.
Finding just election related websites from this candidate
pool requires domain expertise and/or manual intervention.
For that reason, it is useful to have this pool to be as small
as possible to begin with.

Step 2: Since the researcher needs to consider only text
resources from websites for her sentiment analysis project,
she would apply a filter on MIME types to only select such
resources. However, identifying these resources by their
MIME type involves accessing and parsing the HTTP head-
ers of the records in the archive, which is a low-level detail
and needs to be abstracted away from the potentially non-
technical researcher.

Step 3: Another required filter involves the HTTP status
code of a particular capture. The fact that a certain URL
was captured at some point in time and is part of the archive
does not necessarily mean there was a valid Web resource
being served at the URL. The URL could have been the
result of an invalid link or a dead URL that was valid at
a previous time. As our example researcher would only be
interested in successful URL fetches, she would need to filter
for records with status code 200.

Step 4: At this point, the candidate set is still likely to
be very large for manual analysis. The researcher might de-
cide to only focus on websites that contain certain terms or
a specific set of entities, e.g., the candidates of the election.
While seeming straightforward, this content-based filter in-
volves accessing the content of every candidate record, which
in turn involves separating the headers from the response
body, encoding the textual response to a string, parsing out
raw text from HTML, and finally applying text processing
tools, before filtering on the resulting values.

Step 5: Web archives typically contain multiple captures
of a website for every time the website was crawled, regard-
less of whether it has changed or not. Therefore, our re-
searcher might decide to pick only the latest captures of the
candidate URLs. In order to apply this filter, all captures
of the intermediate corpus need to be grouped by URLs
and sorted by their capture times. These types of opera-
tions are very expensive when performed on the raw records
that include the entire payload. By operating only on meta-
data records that contain the required fields, they can be
made much more efficient. However, this implementation
is not something that the researcher should necessarily be
concerned with.

Filtering, selection, grouping and extraction steps, like the
ones described, can be arbitrarily continued. Depending on
the task at hand, it may be necessary to keep track of where
a certain value was derived from. As an example, consider
the case that the researcher deems entities extracted from
the title text to have more value than those extracted from
the body text on a page. Keeping track of this lineage is an
essential way to document the collection building and deriva-
tion process and enable its comprehension and reproduction
by other researchers. Therefore, it should be included in the
output format to be used by the researcher in her further
research process.

ArchiveSpark seeks to tackle the challenges that arise by
a research scenario such as the one described above. A re-
searcher or a technical person supporting her on the corpus
building process should be able to easily specify her require-
ments and efficiently extract the required corpus from a Web
archive.

3. RELATED WORK
Scientifically published articles on data extraction from

Web archives, like ArchiveSpark, have been very limited.
To the best of our knowledge, the only comparable system
is Warcbase by Lin et al. [5], which will be discussed at
the end of this section and serves as the baseline in our
benchmarking process (s. Sec 6). There are also a number
of other approaches in the area of accessing and mining Web
archives including tools from industry.

In this discussion on related work we differentiate between
specialized Web archive access approaches based on certain
properties and more general approaches. The former pro-
vide search and lookup operations as the method of access,
while the latter provide access to all of the archived data
with support for data processing. ArchiveSpark, our tool
for general Web archive access, supports arbitrary filtering
and data derivation operations on archived data making it
much more suitable for the scientific use of Web archives.

3.1 Specialized Web Archive Access
The Internet Archive1, one of the driving institutions of

Web archiving, and most other Web archives, feature the
Wayback Machine2 to provide access to their Web collec-
tions. The Wayback Machine enables URL based access to
the archived captures of a website, based on a server API
powered by a metadata index (CDX). Lookups are designed
for efficient, random URL based access and accomplished
by running binary searches through the sorted index files.

1http://archive.org
2https://github.com/iipc/openwayback
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Researchers can query the CDX server for metadata infor-
mation of a particular URL, host, domain or URL prefix.

In contrast to these structured queries by means of meta-
data, the UK Web Archive3 is working on an information
retrieval system based on the Apache Solr search platform4.
Their Shine project5 supports faceted searching and more
sophisticated trend analysis of Web archive content. Hockx-
Yu [3] identifies 15 Web archives that feature similar kinds
of full-text search capabilities. While these are largely en-
gineering efforts that exploit existing search systems, there
have also been scientific efforts to build indexes specialized
on certain properties, such as time [6] or semantic anno-
tations [7]. There are however two major challenges with
these approaches that limit their applicability in the area
of corpus building from Web archives. First, it is not al-
ways feasible to obtain the necessary resources to parse and
index all archived Web content and store them in a search
index. Second, even if the necessary resources are avail-
able, they cannot efficiently support corpus building pro-
cesses that go beyond these specialized lookups. For these
reasons, with ArchiveSpark, we propose a general data pro-
cessing approach that exploits the CDX for gains in effi-
ciency while not having to rely on an external index.

3.2 General Web Archive Access
Due to the size of Web archives, often in the order of multi-

ple terabytes, a single machine can no longer process or even
store those collections. As a result, distributed computing
facilities are commonly implemented for processing archived
data. In contrast to the previously discussed specialized ac-
cess approaches, these facilities enable general access to the
archives by operating directly on the data records for selec-
tion, filtering, aggregation and transformation.

As part of their self-guided workshops, like the Web
Archive Analysis Workshop6 and ARS Workshop 7, the In-
ternet Archive provides a number of tools for this purpose.
These tools enable researchers to batch process data and
derive information like hyperlink graphs and mined text us-
ing, Apache Hadoop, an open-source implementation of the
MapReduce programming model for distributed computing
of large datasets [8].

AlSum [9] presents with ArcContent a tool for archive ac-
cess based on Hadoop that uses Cassandra [10], a distributed
database to store the extracted data. Similar to ArchiveS-
park, it involves a data filtering step where records of interest
are selected using the metadata fields in the corresponding
CDX dataset. However, in contrast to our approach, the
extracted records are stored into Cassandra to be queried
through APIs powered by a web service. This only works
in cases where the research task is clear and well-defined
beforehand and does not involve iterative filtering and data
transformations.

Most similar to our ArchiveSpark framework is Warcbase
by Lin et al. [5], an open-source platform for data processing
on Web archives. It provides two different methods to ac-
cess the data and serve as a baseline in our benchmarks (s.
Sec. 6). Warcbase was originally developed to be based on

3http://www.webarchive.org.uk/
4https://github.com/ukwa/webarchive-discovery/wiki
5https://github.com/ukwa/shine/wiki
6https://webarchive.jira.com/wiki/display/Iresearch/
Web+Archive+Analysis+Workshop
7https://github.com/vinaygoel/ars-workshop

HBase, an open-source implementation of Google’s Bigtable
[11], a Hadoop-based distributed database system. It fea-
tures tools to ingest the Web archive records into HBase and
allows for temporal browsing of URLs, with efficient, random
URL based access similar to the Wayback Machine. The
first method requires the storing of data in HBase with re-
searchers leveraging Hadoop based tools to analyze it. How-
ever, this has the major drawback of involving an expen-
sive setup phase of duplicating the entire Web archive in
HBase. For the second method, Warcbase provides conve-
nience functions to load and process the archive files directly
using Apache Spark, one of the most popular alternatives to
Hadoop. Spark, in contrast to Hadoop/MapReduce makes
extensive use of the main memory of nodes, which has shown
to lead to impressive speed-ups [12]. On the GitHub repos-
itory of Warcbase, the authors recommend the Spark based
method in order to avoid the HBase overhead of the first [13].
However, this Spark based method, in contrast to ArchiveS-
park which is also based on Spark, does not optimize for
efficiency or meet all of the objectives outlined below.

4. OBJECTIVES
ArchiveSpark addresses six objectives, which we identi-

fied as being essential for a tool for corpus creation on Web
archives, based on practical requirements. These comprise
(1) a simple and expressive interface, (2) compliance to and
reuse of the standard formats in the domain of Web archives,
(3) an efficient selection and filtering process, (4) an easily
extensible architecture to support various derivation tools,
(5) lineage support to comprehend and reconstruct the pro-
cess of derivation from the archive, and (6) an output in a
standard, readable and reusable format.

4.1 Simple and Expressive Interface
The primary objective, when we designed ArchiveSpark,

was a simple interface that lets users access the fields of
interest without the need to do any parsing of archived Web
records themselves. Users of this interface would be able
to easily express any selection and filtering operations and
access available information without carrying over complete
archived records at each stage of the workflow. Additionally,
the idea was to provide a seamless transition from filtering
based on just metadata available in the index to that based
on the contents of the archive.

Since ArchiveSpark is based on Spark (s. Section 3.2),
which is written in Scala, we naturally chose Scala to be the
language of choice for ArchiveSpark. Scala enabled us to
specify the ArchiveSpark extraction and derivation workflow
in a functional manner. This functional approach is less
verbose than that of traditional object oriented languages
and often simplifies tasks as it allows for a more natural
way of expressing thoughts. Our interface is inspired by
the existing Spark API and the Scala standard library, to
provide the same degree of simplicity and expressiveness.

Even though the interface, in our opinion, is fairly intu-
itive to use by a computer scientist or a researcher familiar
with programming, we do not expect researchers from other
disciplines to be able to use it directly in all cases. However,
with the aid of a technically savvy person, the researcher
should be able to express her thoughts and requirements on
the collection building process and get them easily trans-
lated into an executable ArchiveSpark workflow.

http://www.webarchive.org.uk/
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4.2 Standard Formats
In the area of Web archiving, there are a couple of file for-

mats for storing archived web resources and derived meta-
data that have been established and in wide use over the
years. As a result, these formats have either become de-facto
standards or have been standardized by ISO. Given their
common availability in almost every known Web archive,
we wanted our system to be based on these file formats.
We did not want to introduce any new file format or index
structure: while such files or indexes could provide gains in
efficiency for access, their generation would necessitate a pre-
processing phase consuming expensive compute resources
and additional storage. While being based purely on pre-
existing file formats, ArchiveSpark maintains its essential
objective of efficiency as described in the next sub-section.

The most important format in the world of Web archives is
WARC (Web ARChive), which is registered as ISO 28500.
WARC is a format to store archived web resources. Every
record in a WARC file represents the capture of a single web
resource at a given instant of time. The WARC record com-
prises a header section that includes the URL of the resource,
the timestamp of capture and other metadata, as well as a
payload section that contains the body returned by the web
server. In the case of HTTP responses, the payload consists
of a HTTP header and body. Before WARC was introduced
as a format to store Web archives, archived records were
widely stored in the older ARC format8. Although ARC is
not standardized, many Web archives still contain data in
this format, and hence ArchiveSpark supports both WARC
and ARC file formats.

Another format which is not standardized but is seen as
a de-facto standard is CDX9. This is an index format that
contains a number of metadata fields for every web capture
including pointers to the (W)ARC file and the file-offset into
the file where the capture is stored. A header line specifies
the metadata fields contains in the plain text index file. Most
commonly generated, however, are CDX files with either 9 or
11 fields, which are utilized by the Wayback Machine to serve
records to users browsing the archive. Since the Wayback
Machine software is currently the access method of choice
for most Web archives, CDX files are generated by and/or
readily available to these archives. As an example, CDX
files are available for the crawls provided by the Common
Crawl initiative10. Furthermore, it is possible to generate
both WARC and CDX files with the current version of the
Unix/GNU download tool Wget11.

In summary, with ArchiveSpark we designed for, first, be-
ing compliant to these standard formats, and second, not
introducing and depending on any new format. This way we
aim to guarantee that any Web archiving institution that has
(W)ARC and corresponding CDX files can use ArchiveSpark
to extract and mine their Web collections, without requiring
any expensive pre-processing steps or prerequisites.

4.3 Efficiency
Efficiency is one of the core objectives of ArchiveSpark.

Since Web archives are typically large scale data collections

8http://archive.org/web/researcher/ArcFileFormat.php
9http://archive.org/web/researcher/cdx file format.php

10http://blog.commoncrawl.org/2015/04/
announcing-the-common-crawl-index

11https://www.gnu.org/software/wget

of terabytes or even petabytes, a scan-based selection over
all archive files is a very time consuming process and can
potentially run in the order of multiple days. This is in
most cases too inefficient to be used for corpus building as
part of a scientific research task.

With ArchiveSpark we leverage the available CDX index
files (s. Sec. 4.2). As a first step, we apply filters on the
metadata fields from the CDX and generate a small candi-
date pool with the captures of interest that need to be read
in from (W)ARC files. This way, we potentially avoid the
scenario of reading in all the records in the archive before
ending up rejecting a large number of them (s. Sec 5.1). Our
approach of CDX-enabled filtering and selective data access
results in efficiency gains over the scan-based approach.

Furthermore, when working with the raw archive records,
complex operations, like groupings and aggregations, be-
come much more expensive, since the whole records need
to be moved around in a distributed setting. This could
be optimized by stripping out data that is not required by
those operations. However, if needed later, it will need to
be recovered from disk, which is often even more expensive.

With ArchiveSpark we turned this around using a se-
lective data access and derivation approach, starting with
lightweight records comprising of only metadata and itera-
tively extending them as needed, resulting in further gains
in efficiency.

4.4 Extensibility
In most research applications, instead of working on the

raw archived resources, a researcher is interested in extract-
ing or deriving the data of interest for a given research task.
Derivations can either be created from the original payload
of an archived resource or from previously derived data. An
example of such successive derivations on text are Natural
Language Processing (NLP) tasks, such as the extraction
of named entities from websites. The corresponding deriva-
tion tools operate on natural text and thus, first require the
HTML parsers to remove markup and extract plain text,
followed by the NLP tool, i.e., the named entity extractor,
to extract the desired information.

There are a limitless number of other derivations that re-
searchers can be interested in, e.g., audio/video fingerprint-
ing on archived media files, OCR on archived images and
many others. With ArchiveSpark we want to ensure any
possible derivation from Web captures, regardless of whether
they were constructed by us before-hand or not. Therefore,
we designed a very flexible architecture with appropriate
extension points that allow the application of custom code
as well as third-party libraries to build derivatives from the
records of a researcher corpus.

4.5 Traceability
An important trait of any scholarly resource is transparency

and traceability. In order to make scientific research repro-
ducible it is essential to understand how the research corpus
was designed. However, in the case of Web archives, it is
difficult to retrospectively reproduce the crawling process.
Reasons for this are, among others, an ever-changing Web,
a semi-automatic prioritization by Web crawlers, changing
crawling strategies as well as multiple, disparate parties be-
ing involved in the collection process. As a result, we found
it even more important to focus on documenting the data
lineage of corpus building from Web archives.

http://archive.org/web/researcher/ArcFileFormat.php
http://archive.org/web/researcher/cdx_file_format.php
http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index
http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index
https://www.gnu.org/software/wget


Also, depending on the needs of the researcher, it may
often be sufficient to only deal with derived information
and not include the original records. In order to reproduce
this derivation process at a later time, a proper documenta-
tion of the data lineage is absolutely crucial. ArchiveSpark
achieves this objective of traceability by documenting the
data lineage of all the derived records. The documentation
includes metadata that allows for the identification of all the
source records responsible for the derivative as well as the
the derivation path outlining the steps undertaken to filter,
transform and derive from these records.

4.6 Reusable Output
The extraction and derivations steps performed by

ArchiveSpark act as a preprocessing phase in a research
pipeline. The data extracted from the Web archive serves
as scholarly source for a research tasks, which can either
be manual or programmatic. In the case of manual re-
search, researchers would typically create rather small, very
selective corpora and read in the results manually. On the
other hand, researchers may use tools to analyze the cor-
pora based on different features in a completely automatic
or semi-automatic manner.

In either case, the corpus needs to be clean, well-structured
and readable. While human readability implies a pretty
printed output without too much clutter, machine readabil-
ity implies data parsing support. The latter can be guar-
anteed best by producing data in a commonly used format
with existing parsers for various programming languages.
One such format is JSON, which was originally introduced
as an exchange format for JavaScript to be used by Web
services. However, because of its simplicity, it has become
a widely used format that can be easily parsed by many
pre-existing tools.

JSON supports a cascading nested structure with multi-
ple levels of data and is therefore well-suited for supporting
the data lineage functionality of ArchiveSpark (s. Sec 4.5).
Another advantage is that these nested cascades of data can
be easily presented in a fairly human readable form. For
these reasons, we decided on JSON as the default output
format of choice. Of course, any other output format that
meets our outlined objectives can also be implemented and
integrated into ArchiveSpark.

It is worth noting that the use of ArchiveSpark is not re-
stricted to such an output. Researchers can also use it to
access the archive, apply filters and derivations, and con-
tinue using the rich data types provided by ArchiveSpark in
a Spark job to perform data analysis at scale, e.g., machine
learning or graph analysis.

5. ARCHIVESPARK
ArchiveSpark is a framework that enables efficient data ac-

cess, extraction and derivation on Web archive data with a
simple API that enables flexible and expressive queries. The
following sections describe the approach as well as the dis-
tinct features of ArchiveSpark, which are designed to meet
the previously described objectives.

5.1 Approach
ArchiveSpark makes use of the CDX metadata index (s.

Sec 4.2) to selectively access resources from a Web archive.
This approach is optimized for efficiency when extracting a
defined subset of records as it avoids having to perform a

full scan through all records in (W)ARC files. Since corpora
used in scientific fields typically comprise of data derived
from a small subset of the entire Web archive, ArchiveSpark
is well suited for these use cases.

Figure 1 shows how ArchiveSpark works. First, the fil-
tering process is performed using only metadata contained
in the CDX files (s. Sec. 4.2). Second, by utilizing the
file pointers contained in the CDX records, ArchiveSpark
selectively accesses the filtered records from the underlying
(W)ARC files. At this stage, we augment the record’s meta-
data with headers and content from the (W)ARC records.
Next, users apply what we term enrichments to derive new
information, such as named entities or hyperlink data, that
is added to the records. These enrichments can be applied
by executing custom code or external tools. Based on the
derived information, further filters and enrichments may be
applied iteratively. The resulting corpus can be saved in a
custom JSON format that is tailored to support data lin-
eage.

5.2 Interface
The interface of ArchiveSpark is an API (Application Pro-

gramming Interface) designed to define the specification of
a Web archive extraction and derivation workflow. It is
based on Apache Spark and greatly inspired by its API.
Also ArchiveSpark uses the data structures of Spark and
is hence fully compatible with any transformation meth-
ods provided by Spark. Like Spark, ArchiveSpark is im-
plemented in Scala, a functional and object-oriented pro-
gramming language running inside the JVM, Java’s runtime
environment. As a result, it is compatible with any third-
party library running on the JVM as well, for instance all
available Java and Scala libraries.

The entry point to ArchiveSpark is a globally available
object with the same name. It serves as a starting point by
providing methods to load Web archive files into so-called
Spark RDDs (Resilient Distributed Datasets). RDDs are
partitioned collections of objects spread across a cluster,
stored in memory or on disk. Spark programs are written in
terms of operations on RDDs.

Currently, we support reading in (W)ARC and CDX files
that are stored in Hadoop HDFS (Hadoop Distributed File
System). In order to load an ArchiveSpark RDD from HDFS,
one simply needs to specify the path to the (W)ARC and
corresponding CDX files. The following code is written
in Scala, since it is our language of choice for defining an
ArchiveSpark workflow specification:

val archive = ArchiveSpark.hdfs(
”/path/to/(W)ARC”, ”path/to/CDX”)

The above archive variable now references a Spark RDD
consisting of specialized ArchiveSpark records. Hence, all
methods provided by Spark to manipulate it through a set
of parallel transformations, e.g., filter, as well as actions,
e.g., count, can be applied. However, at this point these are
based on the CDX data and therefore, only allow access to
the metadata fields available in the CDX.

The following call applies filters on HTTP status codes
and MIME types and only retains those records with a suc-
cessful response (HTTP status code 200 ) of type text/html :

val filtered = archive. filter (r =>
r . status == 200 && r.mime == ”text/html”)
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Figure 1: Illustration of the ArchiveSpark selection and enrichment approach.

In the functional paradigm of Scala, every operation re-
turns a new, immutable object instead of modifying the pre-
vious one. We have made sure this behavior is provided by
ArchiveSpark as well. Hence, archive still represents the en-
tire dataset, while filtered is a new object representing the
filtered one.

As all Spark transformation operations are lazily evalu-
ated, no actual data access will have been performed yet.
The original RDD as well as the filtered one are just rep-
resentations of the corpus to be extracted from the Web
archive. The above filter is only evaluated or executed once
a Spark action, such as a data output, is performed. The ad-
vantage of the lazy loading is that, although all CDX records
need to be read, only those that have passed through the fil-
ters are kept in the dataset consuming much less memory.

To access the actual content of these records in the next
step, ArchiveSpark provides a method on archive record
RDDs to apply so-called enrich functions. The most basic
enrich function is Response. It opens the (W)ARC records,
which are pointed to by the selected CDX records in the
dataset, parses the HTTP response and enriches the origi-
nal records with three fields: 1. (W)ARC header, 2. HTTP
header, and 3. Payload:

val response = filtered .enrich(Response)

Enrich functions can depend on each other and be applied
consecutively. Each consecutive application derives new in-
formation from its parent dependency. While Response does
not depend on any other enrich function and is usually ap-
plied first, StringContent depends on Response. It trans-
forms the payload of every record in the dataset into a string
representation and enriches the record with this string. This
works because our filter on the MIME types before made
sure that our example dataset only contained text responses
and no images or binary files:

val strings = response.enrich(StringContent)

By explicitly enriching the records with both Response
and StringContent, ArchiveSpark marks both these fields to
be contained in the output. This way, by specifying what
the records should be enriched with, the researcher can con-
trol the required features in the final corpus. If the dataset

referenced by the response variable had been directly en-
riched with StringContent, only this enrichment would have
been part of the output. However, internally, this process
would still have first enriched the dataset with Response as
it is dependent on the payload. And since the payload was
already present in the records from an earlier enrichment,
the payload would have been used as-is and would not have
needed to be re-computed. Note that dependencies specified
in enrich functions are defaults but can also be explicitly
specified by the user. For the sake of clarity and brevity, we
do not show all the currently available methods and options
of ArchiveSpark here in this paper.

Based on the enriched information, additional filters can
be applied. This process of enriching and filtering can be
repeated as needed. For the most efficient execution, it is
recommended to apply filters as early as possible i.e. as soon
as the data to be filtered on is available. This guarantees
that any expensive derivation is performed on as few records
as needed. This is especially important for the very first
enrichment operation, which involves accessing data from
(W)ARC files.

Other than the metadata fields available from the CDX
records, the data derived by enrich functions is not typed,
as different functions can create fields of various data types.
The access to these values is enabled by specifying a path
in dot-notation, where each segment specifies a level in the
derivation pipeline. ArchiveSpark’s get method utilizes the
ability of Scala to automatically infer data types based on
their usage and casts the retrieved value into this type. As
an example, the following instruction filters on the content
string, i.e., the HTML code in the case of a webpage, and
retains only those records that include the term internet :

val internet = strings. filter (
r => r.get(”payload.string”).contains(”internet”))

After the final dataset has been created, it can be writ-
ten out as JSON using the saveAsJson method on archive
records RDDs provided by ArchiveSpark. It transforms the
records into JSON objects consisting of the metadata and
all explicitly enriched data:

internet .saveAsJson(”/output/path/results.json.gz”)



The gz extension is automatically detected by ArchiveS-
park and causes it to compress the output using gzip. The
above six instructions have now created a corpus consisting
of all successful text/html responses, i.e., HTML webpages,
that contain the term internet, formatted as pretty-printed
and well-structured JSON in a compressed form. With this
workflow approach, we believe we have met our objective of
Section 4.1 of a simple and expressive interface.

As an alternative to the JSON output, users are free to
transform the archive records that ArchiveSpark uses as its
first class citizen into any form they want. We provide all
the necessary access methods for this purpose. That way,
besides the corpus building use case, ArchiveSpark can be
used as a library to access Web archives as part of a larger
data analysis application pipeline.

5.3 Extensibility
Currently, we provide the most basic enrich functions to

get users started, but we will continue to extend ArchiveS-
park with more functions moving forward. As ArchiveSpark
is fully open source, any interested parties can also con-
tribute to its development and provide their own tools as
enrich functions. To support this, we provide convenient
base functions that make it easy for a developer to define
custom enrich functions meeting our objective of Section 4.4.

An enrich function consists of the following four proper-
ties, which are required in the definition:

1. Dependency The enrich function that this function
depends on, e.g., Response.

2. Dependency Field The resulting field of the enrich
function that serves as input/source for this function,
e.g., payload.

3. Result Fields The resulting fields of this enrich func-
tion, e.g., string.

4. Body The actual definition of the enrich function,
specifying how new data is derived, i.e., the result
fields, based on the original record or its dependency.
The body can either consist of custom code performing
the derivation or call an external tool.

For the sake of simplicity, in addition to the above de-
scribed enrich method we also provide a mapEnrich method
on archive records RDDs. It allows a user to define enrich-
ments without creating a specialized enrich function. This is
especially handy if the enrichment is only used once, a very
simple function or a highly custom one that is not worth
the overhead of creating a new function. As an example,
consider a function to obtain the length of a content string:

val enriched = rdd.mapEnrich[String, Int](
”payload.string”,
”length”,
s => s.length)

The syntax of such a mapEnrich method is similar to the
syntax of Spark’s map method or the map method on stan-
dard Scala collections. However, in contrast to map func-
tions that transform one value into another, it enriches the
original record with the resulting value preserving all the
metadata and previously derived information. In the above
content length example, String specifies the input data type
and Int the output data type. The first parameter denotes
the path from where to load the input and the second pa-

rameter names the result field. Unlike custom enrich func-
tions, mapEnrich methods can only create one result field.
Instead of specifying the input path with dot separated field
names, one can also pass in a dependency enrich function
and the dependency field name. The last parameter of the
mapEnrich method is the body, which derives the required
information, the content length in this case, from the value
stored in the input path. Applying this method on a dataset
creates a new record for each record in the dataset with the
result field nested under the input path containing the result
value of the body.

5.4 Formats and Lineage Support
Input files required by ArchiveSpark are WARC or ARC

files with their corresponding CDX index datasets (s. Sec 4.2).
Currently, we support one of the most common CDX formats
that is in use by the Internet Archive’s Wayback Machine.
This format encodes eight metadata fields and three addi-
tional fields pointing to the (W)ARC file where the capture
is stored along with file-offset and compressed length of the
record. However, we can easily support additional CDX
metadata as the format evolves in the future.

CDX is a space-separated plain text format with each line
representing one record. A single header line at the top of a
CDX file denotes the fields: SURT URL (Sort-friendly URI
Reordering Transform), timestamp, original URL, MIME
type, HTTP status code, content digest/SHA-1 checksum,
redirect URL (or -), meta tags (or -), (W)ARC record com-
pressed length, (W)ARC record file-offset, (W)ARC filename.

An example CDX line looks as follows:
com,example)/jcdl 20160117113253

http://example.com/jcdl text/html 200 RKMS6XLYED4G8

POFQUIN37WDEWYLD9Z - - 12345 67890 archive.warc.gz

For the output format we decided on JSON, a widely used
format that meets our objective of Section 4.6. Each output
JSON record includes a listing of all the metadata fields
from the source CDX identifying the selected resource. If
no enrichments are applied, this would be the final output
for our example record:

{

"record": {

"surtUrl": "com,example)/jcdl",

"timestamp": "2016-01-17T11:32:53.000+01:00",

"originalUrl": "http://example.com/jcdl",

"mime": "text/html",

"status": 200,

"digest": "RKMS6XLYED4G8POFQUIN37WDEWYLD9Z",

"redirectUrl": "-",

"meta": "-"

}

}

Enrichments are added to these JSON objects as addi-
tional keys next to record. In case the Response enrich
function is applied, as in our example from Section 5.2, the
(W)ARC headers, HTTP headers as well as the raw bytes
of the payload will be added in:

{

"record": {...},

"recordHeader":{

"subject-uri": "http://www.example.com/",

"content-type": "text/html",



"creation-date": "20160117113253",

...

},

"httpHeader": {

"Date":"Sun, 17 Jan 2016 10:32:53 GMT",

"Connection":"close",

"Content-Type":"text/html",

...

},

"payload": "bytes(length: 2345)"

}

Any other enrich function that depends on a value pro-
duced by Response, e.g., payload, will result in the output
being added as a nested value. If, for instance, the dataset
was enriched with StringContent, which calls Response im-
plicitly as its dependency, the resulting JSON might look
like this:

{

"record": {...},

"payload": {

"string": "<html>...</html>"

}

}

In this case, the record and HTTP headers are not in-
cluded, since the user did not explicitly specify them to be
part of the corpus. The payload, however, is required to doc-
ument the lineage of the string (the string representation of
the payload). This meets the traceability objective of Sec-
tion 4.5 as every derived value can be traced back through
the cascades to its origin.

When the user is interested in both the original value as
well its derivations, for instance, when mapEnrich is called
to enrich the dataset records with their string content lengths
(s. Sec 5.3), a special underscore key (_) is introduced. The
field with this key retains the original value, like in the fol-
lowing example:

{

"record": {...},

"payload": {

"string": {

"_": "<html>...</html>",

"length": 2345

}

}

}

Other derivatives based on this string content would be
placed next to the underscore, just like length. In the same
way, if the dataset was explicitly enriched with both Re-
sponse and StringContent, the byte representation of the
payload along with the header fields would have been placed
next to string.

Finally, we consider the example of deriving named enti-
ties from the titles using the HTML string representation.
This example would involve a HTML parser, which depends
on StringContent to enrich the dataset with the required ti-
tle value nested under a HTML field, as well as a named
entity extractor tool, which in turn depends on the title to
create a set of named entities. The lineage path of this con-
structed example would look as follows:
payload.string.html.title.entities.

6. BENCHMARKS
We ran benchmarks to assess the efficiency benefits of ex-

ploiting the CDX dataset when accessing Web archives (s.
Sec. 5.1). The run times of three different scenarios are
compared using ArchiveSpark and two baseline approaches:
a scan-based approach using pure Spark, and the Warcbase
approach using HBase. For both baselines, we used the tools
provided by Warcbase to load and access the datasets (cp.
Sec. 3).

6.1 Dataset
One of the services provided by the Internet Archive is

Archive-It12. It is subscription based and enables partner
institutions to run selective focused crawls to create and
archive their own thematic and event driven collections. For
our experiments, we chose one of these collections, the Oc-
cupy Movement 2011/2012 13 collection, collected by the In-
ternet Archive itself. Unlike a generic Web crawl collection,
this collection features a well-defined scope and is not too
large, allowing our benchmarks to be performed in a reason-
able amount of time.

The collection contains a total of 17,478,067 (17.4 Million)
captures with 10,089,668 (10.08 Million) unique URLs. It
contains Web content crawled during the time period Dec
3, 2011 to Oct 9, 2012, with a total storage of 470.9 GB of
compressed WARC files. The CDX data, generated by us,
adds in 24.4 GB of data size.

6.2 Experimental Setup
The experiments were performed on a Hadoop cluster run-

ning the Cloudera distribution14 (Hadoop 2.6.0-cdh5.4.9).
The cluster consisted of 2 master nodes and 24 compute
nodes with a total of 256 CPU cores, 2560 GB of RAM and
960 TB of hard disk space.

The three systems we compared in the benchmarks were:

1. ArchiveSpark
2. Spark: Using Warcbase’s Spark library
3. HBase: Using Warcbase’s ingestion tool

For both ArchiveSpark and pure Spark approach, WARC
files from the collection were stored in Hadoop HDFS. The
CDX files required by ArchiveSpark were generated using
the Internet Archive’s CDX Generator, which is available
open source on GitHub15. Generating the CDX files took
110 minutes, however, this is a one time process and is any-
way a necessary step to enable access services like the Way-
back Machine. This dataset could have also been down-
loaded directly from Archive-It. For these reasons, we con-
sider this CDX generation step to be negligible in the bench-
marks.

In the HBase (Warcbase) approach, we had to first ingest
WARC files into HBase. Warcbase exploits certain proper-
ties of HBase to enable access to Web archives. For instance,
different captures of a crawled Web resource are stored as
timestamped versions of the same record in HBase. URLs
are stored in an inverted, sort-friendly format and are used
as row keys for fast lookups with the MIME type serving as
a column qualifier. These design decisions allow for an ef-
ficient selection and filtering process based on these three

12https://archive-it.org
13https://archive-it.org/collections/2950
14http://www.cloudera.com
15https://github.com/internetarchive

https://archive-it.org
https://archive-it.org/collections/2950
http://www.cloudera.com
https://github.com/internetarchive
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Figure 2: Benchmark times of ArchiveSpark vs. Spark vs. HBase (both by leveraging Warcbase)

properties: URL, timestamp of capture, and the MIME
type. When additional fields are required, those need to
be parsed from the WARC records, either from headers or
the payload, which are stored as values in HBase cells. Due
to limitations on the local disk space of our cluster, we had
to ingest the data into HBase from the WARC files stored
in HDFS. As the current version of Warcbase only supports
reading in WARC files from the local file system, we mod-
ified this system accordingly. The ingesting process took a
little over 24 hours with the resulting database containing a
complete copy of the entire collection.

For both the Spark and HBase approaches, we queried
the data using Spark and also used it to perform operations
on the resulting data. All three systems being compared ran
with the same Spark configurations, using 10 executors with
4 GB of memory each. As the cluster was not exclusively
available to us, with other jobs running at the same time, the
cluster load varied among the benchmarks. To compensate
for these variations, we ran every single benchmark a total
of five times.

We chose a common task among all benchmarks: select a
subset of records from the entire dataset, count the length
of the string content of these records and compute the sum
of these lengths. This task is well-suited for the benchmark-
ing process since it features the extraction workflow sup-
ported by ArchiveSpark. It involves a filtering phase to se-
lect the subset of records of interest, an enrichment phase
to augment records with content, as well as a derivation
phase that enriches the content with its string representa-
tion and length. We intentionally did not apply any more
sophisticated enrichments that involved third-party libraries
as those would only be applied on top of these results and
would depend on the performance of these external tools.

6.3 Scenarios and Results
The benchmark consisted of three different scenarios, start-

ing with the most basic filtering operation to only select
records of a given URL, and ending with a more sophisti-
cated scenario involving a grouping operation to select the
latest online capture of all URL from a specific time period.

6.3.1 Scenario 1
First, we filtered the dataset for all records of one partic-

ular URL, i.e., http://map.15october.net/reports/view/590/.
In case of HBase, this is directly supported and constitutes a
simple row query. Therefore, it is understandably very fast

with the query taking between 1.4 and 4.4 seconds. How-
ever, when comparing with the other approaches, the pre-
processing time required for HBase as well as the additional
space requirements need to be kept in mind (s. Sec. 6.2).
The times of all three approaches are illustrated in Figure 2a,
where the whiskers represent the fastest and slowest runs,
while the box covers the ones in the middle, with a centered
line representing the median. As shown, ArchiveSpark is
about 100 times slower with times between 160.3 and 675.4
seconds, but still around 10 times faster than pure Spark
with times between 2522.6 and 2734.0 seconds. This is where
ArchiveSpark’s incorporation of the CDX index leads to per-
formance benefits as it allows for the selective access of only
records of the given URL, while pure Spark performs a scan
over the entire dataset and parses every single record in or-
der to find these records.

6.3.2 Scenario 2
In the second scenario, instead of filtering by URL, we se-

lected all webpages, i.e., MIME type text/html, belonging to
a specific domain, i.e., 15october.net. The results are shown
in Figure 2b. The HBase query performs a targeted row scan
again, this time for all keys starting with the specified do-
main in its inverted, sort-friendly form, i.e., net.15october).
However, this alone is not sufficient as the scan would also
yield rows starting with net.15octoberx, which is not the cor-
rect domain. Therefore, an additional filtering step is re-
quired. Next, the filter by MIME type text/html is also di-
rectly supported by HBase, since MIME type is available as
a column label. With times between 33.4 and 65.6 seconds,
the HBase approach is around a magnitude of 10 slower
than in the first scenario. ArchiveSpark comes closer to
HBase with times between 349.2 and 379.1 seconds, because
both values to be filtered are part of the CDX and there-
fore, the task is similar to the one in the first scenario. The
pure Spark approach of a complete scan is around 10 times
slower than ArchiveSpark with times between 3737.7 and
3853.2 seconds.

6.3.3 Scenario 3
Finally, we selected the latest successful captures for all

URLs crawled in a specific month, i.e., Dec 2011. This is
accomplished in two steps: first, all captures from the de-
sired time period (Dec 2011) and with a successful response
(status code 200) are selected and next, the latest capture
for each candidate URL is chosen. The pure Spark approach



takes between 19432.0 and 20744.3 seconds in this scenario.
This approach first scans through all records of the dataset,
followed by the step of identifying the latest capture of every
URL from the set of qualifying records. This may be more
efficient when only a few records of a dataset need to be
filtered out. However, in scenarios, like this, where users are
interested in only a small subset of a large collection, it is
very slow. In the HBase approach, although HBase directly
supports timestamp based filtering, which is performed on
the versions of a URL, filtering on the HTTP status code re-
quires parsing the WARC record to read in the status code.
Only then can the latest successful captures be selected as
an additional post-processing step. The HBase approach
takes between 12117.7 and 12971.5 seconds. For ArchiveS-
park, as both properties, timestamp and HTTP status, are
contained in the CDX files (cp. Sec. 5.4), the filtering as
well as selection of the latest captures is entirely possible
using just the CDX. For that reason, ArchiveSpark leads in
this benchmark as illustrated in Figure 2c with times be-
tween 9639.6 and 9270.8 seconds. This illustrates how the
rich potential of ArchiveSpark’s selective access approach is
unlocked when a large fraction of the dataset can be filtered
out based on available metadata.

7. CONCLUSION AND OUTLOOK
Web archives are becoming more and more important as

a scholarly source and building a corpus from these archives
is typically one of the first steps in any research process.
Since researchers working with these Web collections are of-
ten from the humanities with no technical background, there
is clearly a need to simplify this extraction and derivation
process. In the first part of this paper, we presented a num-
ber of objectives and discussed why we deem them as essen-
tial for any system that supports building research corpora
from Web archives. These include simplicity in terms of us-
age and extensibility, efficiency of access and traceability by
documenting data lineage for the purposes of reproduction
and reuse.

In the second half of the paper, we presented ArchiveS-
park, a framework that effectively tackles these objectives
by making use of existing file formats, a functional approach
to data processing at scale and utilizing a widely deployed
metadata index. By utilizing this index that is a de-facto
standard in the area of Web archiving, ArchiveSpark avoids
having to perform any pre-processing of the data or hav-
ing to invest in additional storage space. We also provided
benchmarks that show how ArchiveSpark is more efficient
than other alternatives when selecting records of interest
based on the rich metadata already available in the meta-
data index. ArchiveSpark, however, is not the best option
when a data processing task needs to run across all or a large
fraction of the records in a Web archive.

Moving forward, we plan to extend ArchiveSpark to sup-
port more data sources, such as streaming data over HTTP,
which would allow researchers to efficiently extract corpora
from publicly available, remote Web archives without need-
ing a local copy of the complete dataset. Since Python is
a popular language among data researchers and scientists,
we plan to provide support for PySpark, the Python API
for Apache Spark. ArchiveSpark is fully open source, and
we hope for many contributions from the broader commu-
nity, especially in terms of third-party tools to be used as
extensions in the ArchiveSpark pipeline.
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