
Beyond Plain Video Recording of GUI Tests
Linking Test Case Instructions with Visual Response Documentation

Raphael Pham, Helge Holzmann, Kurt Schneider
Software Engineering Group
Leibniz Universität Hannover

Hanover, Germany
{raphael.pham, kurt.schneider}@inf.uni-hannover.de

helge.holzmann@se.uni-hannover.de

Christian Brüggemann
Application Lifecycle Service Center

Capgemini Deutschland GmbH
Hanover, Germany

christian.brueggemann@capgemini.com

Abstract—Information systems with sophisticated graphical
user interfaces are still difficult to test and debug. As a detailed
and reproducible report of test case execution is essential, we
advocate the documentation of test case execution on several
levels. We present an approach to video-based documentation
of automated GUI testing that is linked to the test execution
procedure. Viewing currently executed test case instructions
alongside actual onscreen responses of the application under
test facilitates understanding of the failure. This approach is
tailored to the challenges of automated GUI testing and
debugging with respect to technical and usability aspects.
Screen recording is optimized for speed and memory
consumption while all relevant details are captured. Additional
browsing capabilities for easier debugging are introduced. Our
concepts are evaluated by a working implementation, a series
of performance measurements during a technical experiment,
and industrial experience from 370 real-world test cases
carried out in a large software company.

Keywords-component; Automated Test; Graphical User
Interface; Video; Code Tracing

I. INTRODUCTION: AUTOMATED GUI TESTING
Despite development of different approaches, GUI

testing remains a difficult task. Typically, a GUI supports
user input by mouse and keyboard, thus the theoretical
execution possibilities of a GUI explodes compared to the
case of a method of discrete values. Regression testing of
test-suites has long become an integral part of Quality
Management and Maintenance. Test-driven development
calls for automated regression testing after each change made
to the code [2]. Also, changes in the environment demand
repetition of test suites. Manually repeating long test suites
takes too much time and effort and will not be performed in
practice. Therefore, automation of test execution is
indispensible for repeating long and complex suites of test
cases.

Zimmermann et al. [18] analyzed what made a good and
usable bug report from the perspective of the bug fixing
engineer. They found “steps to reproduce” to be the most
desired information. Video recording could provide a usable
impression of test case execution. Still the video can barely
give insight to steps necessary to reproduce the failure as
only the response behavior is documented. When GUIs are

tested automatically, the following aspects need to be
captured and conveyed to the developers responsible for
debugging:

• The deviation of required and observed behavior of
GUI elements must be recorded. A video with
sufficient coverage of the screen and resolution in
time is an option to capture enough detail for
analysis during debugging.

• The test case step that caused the failure should be
identified and documented, too.

As generic screen videos will not qualify for this
purpose, we propose a tailored video-based documentation
that is linked to the executed test case instructions.

In Section II, we discuss specific challenges in debugging
GUIs. Those challenges are compared to related approaches
in Section III. We propose concepts to meet the challenges
and present our approach of tailored video-documentation in
Section IV. It was developed in cooperation with Capgemini,
a leading IT consulting company which is present in more
than 30 countries with over 115,000 employees. The
resulting demonstrator was evaluated with respect to
technical quality, such as performance and memory
consumption (Section V). It was then applied to 370 real
industrial GUI test cases at Capgemini. In Section IV, we
consider limitations of our approach. We discuss our
findings in Section VI and conclude.

II. CHALLENGES IN DEBUGGING GUIS
One of the main challenges in GUI testing is often

neglected: trouble shooting and debugging. For the sake of
software quality and in the interest of saving resources,
findings from the GUI testing process and related tools must
feed seamlessly into debugging [19]. Myers describes this
debugging task as two single steps [1]: the first step is to
detect the defect in the code of the application under test
(AUT). The second step is to fix it. Failure refers to deviant
behavior of the AUT compared to the required behavior
during test execution, while defect refers to flawed lines of
code in the AUT which result in the failure [3]. To detect a
defect, unexpected behavior needs to be analyzed. One
challenge often encountered with GUI tests is that failures
(deviations) are not immediately uncovered.

978-1-4673-1822-8/12/$31.00 c© 2012 IEEE AST 2012, Zurich, Switzerland103

Fig. 1. Deviation of actual behaviour from required behaviour.

The example dialog in Fig. 1 requires the user to type in
her first name in text field A and her last name in text field
B. Furthermore, the user shall be able to use TAB to switch
from text field A to text field B. The used test framework
identifies dialog elements via ID. One GUI test case could
be:

1. open dialog, use ID to select text field A
2. send keyboard events in order to type “First”
3. send TAB keystroke, switch to text field B
4. send keyboard events in order to type “Last”
5. find Button “ok” by ID and click it
6. check if text field A says “First”
7. check if text field B says “Last”

Supposing that the TAB function is not implemented

properly and step 3 causes the dialog to lose focus. In step 4,
the send keyboard events are lost and do not appear
onscreen. Only test step 7 reveals the deviation. Neither a
screenshot at the point of time when the deviation is revealed
(step 7) nor a video recording of the whole test case properly
documents the failure: The screenshot only shows the dialog
with an empty text field B. While this information is also
included in a video, the video would not show the loss of
keyboard events, as they did not appear onscreen. For
debugging, this is critical information. However, the video
could help in revealing step 3 as the deviation point (nothing
is happening after text field A has lost the focus in step 3).
Still, consulting the test case instructions and comparing the
observed behavior is essential in order to gain understanding
of the failure.

The case of correcting wrong or outdated GUI test cases
presents a similar situation: Supposing that in step 1 the ID
to select text field A is outdated. Failure would be registered
at step 6. Again, video and screenshot lack critical
information and would benefit from further semantic
information. In this case, the inclusion of executed test case
instructions could facilitate understanding of the expected
behavior1.

We advocate video recording of GUI tests and wish to
enhance its usefulness from the perspective of the debugging
engineer. Through a video recording the engineer gains a
comprehensive insight into the test procedure and the
responses of the AUT. As these examples show, this
information should be enriched with insight to the intended
test procedure in order to facilitate debugging.

We propose to document both the AUT’s reaction
onscreen as well as the current status of the test case
(executed test case instruction) and present these views of
the test procedure in a synchronized manner. This would
reveal the critical test case step earlier and facilitate
understanding of the failure. Thus, the search for the
deviation is shortened and the engineer gains insight in the
test procedure.

1 In our survey (section 5, User Reactions) GUI testers at Capgemini
reported the increase of OS-version of Windows would regularly bring
changes of IDs for standard GUI elements of system dialogs. This in turn
renders several test cases wrong and results in the repeating task of
correcting already passed test cases in order to maintain regression testing.

Rather sophisticated mechanisms are required to support
debugging. A specialized screen recorder is needed as well
as a code tracing utility. Main challenges for implementing
such a tailored video-documentation are (1) the very fast
speed of automated operations in GUI tests and (2) tracing of
test code, which describes the operations to be performed.
The fast operation speed requires taking a lot of screenshots
to capture all performed actions without overlooking a
potentially important change. On the other hand, memory
has to be managed in a very efficient way. Hence, storing of
duplicate screens has to be avoided. How to solve the other
challenge (tracing of the test code) depends on how the test
code will be handled by the test framework. If it is written in
a scripting language, it will be interpreted and evaluated
directly by the framework. Since the operations will be
performed by the framework, tracing can easily be
integrated. Other test frameworks like Ranorex [4] do not
offer such a scripting language and provide a library to
develop the test code in a full-fledged programming
language like C#.

III. RELATED WORK
We know of no tool in the domain of GUI testing that

offers the functionality to fully solve the described
challenges of synchronized screen recording with
simultaneous test code tracing. Many existing screen
recorders like Camtasia Studio by TechSmith [5] provide
very good screen capture capabilities, but for more universal
purposes than the special case of GUI testing. Their main
purpose is the recording of the screen for tutorials or
demonstrations of applications. They have to work in an
efficient way, no matter what type of content appears on the
screen. Therefore, they have to treat and handle full screen
actions and very fast animations like videos as efficient as
usual applications with graphical user interfaces.

Other screen recorders consider the operation of GUI
applications by reacting to user inputs to take snapshots.
DebugMode’s Wink is a working example [6]. However, an
intensive evaluation of this tool has shown that its method of
event-driven recording is not suitable for capturing GUI
tests. Interesting actions in GUI tests are triggered by input,
but do not appear immediately. It is a difficult task to

104

determine how long the internal action resulting from the
input lasts and how long the screen has to be recorded after
each input. Common test frameworks wait until an event
occurs rather than for a pre-defined timeframe.

The approach of the solution presented in this paper is to
react to screen changes by mirror graphic drivers. This
concept is often used by virtual network computing software
(VNC). The open source project TightVNC software [7] uses
a mirror driver to detect changes on the screen and transfers
it efficiently via network to the controlling client. Very
similar to it is UltraVNC [8]. The developers of this solution
created an own mirror driver and they also developed a
screen recorder using the driver [9]. They have extended the
open source CamStudio by RenderSoft [10].

Unfortunately, all these solutions are stand-alone
applications. They have been developed for screen recording
and creating videos of it, but it is difficult to integrate these
solutions into another application. For this purpose,
Microsoft offers the Expression Encoder Pro [11] with a
specialized API to realize screen capturing in custom
developed applications. Besides the actual screen recording,
timestamps of every captured screen frame are needed in
order to synchronize these frames with the timestamp
information of the traced test code instruction. We know of
no solution that provides these data in its recorded videos.

The only complete third-party solution which allows both
of the requested tasks (screen capture and code tracing) is the
test framework, which is integrated in the Microsoft Team
Foundation Server [12]. It uses the mentioned Expression
Encoder to record automated GUI tests and Microsoft’s
historical debugger IntelliTrace [13] to simultaneous trace
the executed test code that operates the application under
test. Personal communication with Microsoft revealed that
synchronizing and connecting video and traced code is
possible. However, this only applies to manually executed
GUI tests and does not apply to automated regression testing.

IV. CONCEPTS OF TAILORED VIDEO-DOCUMENTATION

A. Screen Capture
Obviously, a main task in video-documentation of

automated GUI tests is recording the screen. It is less
obvious at which point of time the screen should be
recorded, and whether it may be sufficient to capture only a
part of it. For debugging, frequent and complete screenshots
are preferable. However, this leads to huge amounts of data
being recorded and stored – a challenge to the speed of
recording and the memory used for mid- and long-term
storage. The intention is to take as many shots as necessary,
but also to manage the memory in an efficient way.

Time-driven and event-driven capturing of screenshots is
common in different approaches, used by the several screen
recorders (e.g. DebugMode’s Wink [6]). In time-driven
approaches, the whole screen is captured after a pre-defined
interval. In theory, this approach can catch all actions
appearing on the screen, given the interval has been chosen
short enough. Several frames per second may be necessary.
In practice, however, the time it takes to capture and save a
snapshot of the screen limits the frequency of screenshots. At

a lower frequency some activities on the screen may not be
captured. This may cause problems in debugging when
important intermediate states have not been recorded and
therefore cannot be considered during analysis. In addition,
time-driven approaches also take redundant snapshots at the
same rate when nothing changes on the screen.

The event-driven approach captures the screen only
when a defined event occurs. Examples for such events
include keyboard or mouse inputs. However, not every
action visible on the screen is a direct consequence of such
an input event. Displayed information and screen layout may
change during simulation or time-consuming computations,
as well as due to background processes. Therefore, not all
visible actions are covered and captured in an event-driven
approach. For example, Wink [6] recorded the press of a
button but not the resulting opening of a window after some
computation time.

In code-driven capturing, the internal event of execution
of a test code instruction is used to trigger snapshots. Similar
to the above-mentioned user input events, not every action
onscreen is triggered by such an internal event. In addition,
only some of the instructions result in a visible action.
Therefore, this approach requires a lot of space for redundant
snapshots, despite rather low coverage.

As time-driven, code-driven and user-input-event-driven
approaches have drawbacks regarding onscreen change
coverage or space consumption, we instigated other event-
driven options. To capture a sufficient amount of the actions
that result in visible screen changes, it would be most
suitable to consider those visible screen changes as events
and react directly when they occur. We call this approach
output-driven screen capturing. As operating systems like
Windows do not provide native support to detect screen
changes we employed a so-called mirror driver. It works like
a usual graphics driver, but without producing any visible
output. When an output to the screen occurs, the mirror
driver will be informed and stores the coordinates of the
changed rectangle. As a result, memory can be saved by
capturing just that changed area instead of the whole screen
on every change. Fig. 2 illustrates this principle.

The shaded rectangles on the left represent the changed
segments. As shown in step 4, more than one change can
occur at a time. However, saving all of these changed areas
separately takes more time than saving one larger area. It
also takes more memory space because it cannot be
compressed as much. Hence, a common bounding box is
computed around all changes, detected at one time. That
bounding box also contains areas of the screen that have not
been changed, but missing a change would be much worse
than wasting a little space.

After capturing the segments, they are stored in a hash
map (middle column in Fig. 2). The hash map keys are
specialized objects which identify the corresponding
segments by the hash of its bytes. On conflicts of the hash
values an exact comparison will be performed byte by byte.
This allows detecting duplicates. Due to the nature of GUI
tests, many views, buttons and other controls appear
repeatedly in a test. Thus, they result in the same segments
with the same hash values and do not need to be stored. This

105

Fig. 2. Output-driven capturing of changed screen segments.

Fig. 3. Mock-up of the viewer application.

can be accelerated by compressing the segments with PNG
or any other graphic compression format.

Finally, the coordinates of every segment have to be
stored. That is the list on the right in Fig. 2. Due to the
duplicate detection mentioned above, multiple captures in
this list may point to the same segment. They also contain
the mouse coordinates, because the mouse cursor is not
contained in the segments. The cursor must be reconstructed
on viewing the recorded video.

B. Code Tracing
In order to analyze and understand failures, the desired

behavior must be known. It is then compared to the observed
behavior. By connecting the test code to the captured screen,
GUI changes are linked to their semantics. In order to relate
executed test instructions with actions on the screen, the test
code must be traced. This code tracing has to log every test
code instruction with the timestamp of its execution. Based
on this information the exact test process can be
reconstructed. For this purpose, the test code has to be
instrumented with specific trace instructions. This depends
on the test framework used as well as on the interpretation
policy of test case instructions. Pre-compiled and
independently running test code is more difficult to trace
than code interpreted by the test framework. Generally, code-
injection based on concepts of aspect-oriented programming
(AOP) [14] can be used to inject code-tracing instructions
into the test code. In our case, the source of the test code was
not available and we resorted to byte code weaving [22] to
insert timestamp instructions.

C. Viewing
After running a video-documented test, the possibility to

watch the records must be provided. Since recording times
and strategies were optimized for a good balance of
recording speed, required memory space and full change
coverage, a specialized viewer application is needed. During

replay, the viewer synchronizes the reconstructed video with
the traced test code instructions via timestamps. Thus, screen
recording and tracing can work independently and do not
need to communicate with each other while recording the
test execution. As communication would require additional
computation resources, the test execution could be affected.

The viewer's main task is to display the video alongside
the documented test code. This facilitates failure analysis and
debugging. The interface sketch in Fig. 3 shows the main
components of such a viewer.

The time line below the screen and the code area shows
the current position of the playback. The boxes above display
the screen at this point of time on the left and the
simultaneously executed code on the right. Control buttons
”Play” and “Stop” behave as in usual media players. A
second slider below these buttons allows accelerating or
slowing down the playback. This allows for quick navigation
in order to find the position of the failure in the video. For
diagnostic purposes the “next screen” and “previous screen”
as well as “next line” and “previous line” buttons left and
right offer possibilities to advance stepwise through the
records. This is indispensable for navigating through the
executed code. Automated tests run much faster than manual
interactions. Displayed at recording speed, the video runs too
fast to follow. These options allow navigating through the
code like in debuggers of common IDEs.

In order to save time and memory when reconstructing
the frame, so called key frames are employed. They contain
the entire screen at one certain point of time during the test.
This concept is similar to the intra coded frames (I-Frames)
in common video coding standards like MPEG or
H.264/AVC [15, 16, 20, 21]. By a statistical analysis of the
segment sizes, it is often possible to create these key frames
if the captured segment already contains nearly the whole
screen. All other frames have to be reconstructed starting
from the last available key frame. All segments captured up
to the selected timestamp must be superimposed in the
correct order. In this case, the key frames allow releasing all
the memory needed to display previous segments as shown
in Fig. 4.

106

Fig. 5. Screenshot of viewer application.

Fig. 4. Screen construction with key frames and segments.

V. EVALUATION

A. Evaluation of the Operational System
Based on the mentioned deliberations and a performance

evaluation (see following Section) an operational video-
documentation system called ScreenTracer (ST) has been
implemented (Holzmann [17], in German) according to the
output-driven approach with duplicate elimination. The
requirements for its practical usage were provided by
Capgemini. The ST is implemented with a dynamic load-
time code injection to instrument the test code. The test code
is written in C# and is pre-compiled to the common
intermediate language code. Thus, it runs independently,
performs the test operations by itself and is executed by the
common language runtime environment of Microsoft’s .NET
framework. The test framework is a specialized tool for a
comprehensive GUI application. It monitors the tests and
logs failures. It contains about 370 test cases of very
different types and durations from just a few seconds to over
four hours. The complete test suite of all test cases runs for
more than 70 hours.

Capturing all of these tests was an intensive check of the
implementation of the ST and its concepts. Additionally a
specialized viewer application has been developed (see Fig.
5). This tool was given to debugging developers of
Capgemini and is still employed in real debugging scenarios.
Analysis of the captured data has shown that the captures on
average needed less than 150 MB per hour of disk space.
Due to the high number of considered test cases this amount
of memory usage is representative. In the examined tests, the
average size of these segments has been 635 x 305 pixels and
about 40% have been duplicates. These values can also be
assumed to be representative for most GUI tests.

B. Comparision of Concepts
The evaluation of the mentioned concepts has been

performed on prototypes and existing software. We found
user-input-event-driven and code-driven recording to provide
too low coverage of recording of actions onscreen and
dismissed them. We tested the user-input-event-driven
approach with Wink [6] and noticed that onscreen events
following a user input are missed by this approach. For the
code-driven approach, we used a prototype, which took a
screenshot whenever a test code instruction was executed. As

test code can contain instructions, which do not result in
direct onscreen change, redundant screenshots are taken.
Furthermore, actions onscreen, which may occur while the
test code is waiting for a specific event, are not recorded.
Therefore, we concentrated our further evaluation and
comparison of memory consumption on time-driven and
onscreen-driven recording.

The evaluation of memory consumption was conducted
on a test suite of 44 real industry test cases. These test cases
include common GUI tests for opening, closing the
application, saving and loading projects, as well as operation
of specific GUI elements (such as traversing a tree-
navigation element by keyboard). Test cases were chosen
because they comprise of common operation of GUI
elements: Clicking buttons, generating keyboards events,
selecting elements by ID and operation of dialog elements by
mouse or keyboard.

Fig. 6 shows the memory usage of the time-driven
version of the ST in comparison to the output-driven version
of the ST. The diagram shows a short time frame of about
half an hour. The linear character of the graphs lets us
assume that no different behavior in memory consumption is
to be expected even if longer tests are run.

By design, the output-driven ST was triggered to take a
capture every time it registered change onscreen. Its maximal
frequency of screen captures was 3 frames per second. For
comparison, the time-driven version took screenshots at a
frequency of 3 frames per second. Due to irregular
occurrence of changes onscreen the output-driven version
does not capture segments at equidistant time distances (in
contrast to the time-driven approach). In order to capture
changes onscreen with a comparable coverage to the output-
driven approach, the capturing frequency of the time-driven
approach would need to be increased. This would
undoubtedly result in even higher memory consumption.

As shown, the capturing of screen changes only takes a
small fraction of the time-driven memory space. In this test it
was about a fifth. Duplicate detection has reduced the
memory usage even further.

The shapes of the graphs are quite interesting. The graph
of the time-driven prototype is very straight, due to its

107

Fig. 6. Memory usage while running a representative test suite of 44 real
industry test cases.

periodical screen capturing method. The output-driven
prototype only captures the screen when it changes. This
results in little waves of the graph (the memory usage for the
saved segment). If nothing happens on the screen, no
memory is needed and the graph is horizontal. With
duplicate detection, these waves are flatter as the actions on
the screen result in less segments and less space.

As shown in Fig. 6 the high consumption of resources
with the time-driven approach caused a slower operation of
the test suite execution, whereas the output-driven prototype
finished on time. This is important, as GUI tests often wait a
specified amount of time before proceeding. Slowing a test
case down could result in misleading test results.

C. User Reactions
The ScreenTracer has been in use at Capgemini’s for five

months. We conducted a survey among the developers in
question and interviewed them about their experiences with
ST. Before ST was introduced, the test framework provided
a screenshot of the GUI when the failure was detected, in
some cases an event log. If the GUI test was done manually,
the debugger may have been provided with a textual
description of the failure. Video recording of tests was not
employed by Capgemini.

User reactions were generally positive. Users reported to
be able to debug faster and would recommend the tool to
other colleagues. As video recording was simultaneously
introduced with test code tracing, we specifically asked
about the effects of gaining insights into the test code
execution. Users reported to use the video for rough
localization of the beginning of the departure from required
behavior. Then, the presented test code is used for fine
adjustments. Furthermore, test code provides semantic
meaning and supports the happenings onscreen.

The following attributes were outlined:
1. Test code conveys semantic meaning:

a. Even though the mapping of test code
to screen action may be a little off, it
still helps.

b. Based on this semantic insight, wrong
or outdated test cases can be corrected.

2. “The Complete Package”: In some cases, the
engineer was able to skip reproduction of failed
test cases and began debugging earlier.

3. “It’s more fun!”

VI. LIMITATIONS
After execution of a test code instruction, computation of

the appropriate screen change and realization of that change
takes a little amount of time. This can lead to a small delay,
causing the ST to display changes and traced code out of
sync. The reconstructed video of the changes may lag a little
behind the presentation of the traced code, in some
situations. The presentation of onscreen changes linked with
test code instructions is intended to support the debugging
engineer in understanding the failed test procedure. As the
lagging is not great and the course of the test case execution
can still be reconstructed, we consider this a minor
annoyance. In time critical test cases, this may lead to

uncertainties, for example: When opening an application and
closing it five times in a row, it can be hard to map each test
instruction to its correct (very similar) onscreen response.
Generally, the ST was not developed with highly time
critical applications in mind. It is intended to establish an
easy to utilize link between onscreen AUT responses and
executed test case instructions.

In some cases, it may be possible for the ST to
effectively replace a bothersome and laborious reproduction
of a failed test case. This may be the case, when the
developer already has good understanding of the AUT in
question. As the ST does not (yet) provide sophisticated
insight into the inner states of the AUT but only provides the
external view and the intended actions, it may not replace
reproduction in intensive debugging completely. Insight into
the AUT’s state could be gained by tracing its source code
similar to tracing the test code.

Unexpected onscreen behavior, which is not directly
intended by the test case, is by design documented as well in
the videos of the ST, as they are also rendered by the mirror-
driver. Examples are pop-ups of browser windows. This may
also cause the AUT to lose focus and ultimately bring the
test case to a wrong result. However, this is not a GUI test
specific problem, as interferences in a test environment can
occur in other test designs as well. The inspection of the
video can help to identify the problem. In that case, a
repetition of the test case should bring clarity.

VII. DISCUSSION
The elaborated concepts implemented in the

ScreenTracer (ST) video-documentation system provide an
innovative way of debugging GUI tests. They offer
possibilities to trace back the behavior of the application
under test as well as the complete system under test during a
GUI test. Of course, each common screen recorder as
mentioned in related work can capture the actions on the

108

screen during a test and store it in a usual video format. They
can be viewed in existing media players with numerous
controlling capabilities. However, none of these recorders
and media players have been developed for the specialized
case of capturing GUI tests. Their frame rates are often much
lower, because of their universal recording purpose. Also the
compression of videos is not optimized for the purpose of
recording GUI tests. In GUI tests, reoccurring dialog
elements (such as buttons) present the chance for
compression. The ST captures only the changed segments of
the screen and detects duplicates. The memory can be
managed in a more efficient way, the frame rate of the
recording is increased and the specialized viewer application
enables advancing the captures change by change onscreen.

The code tracing is another advantage no usual screen
recorder offers. Of course, separate tracing tools or logging
frameworks allow the tracing of the test code. There are also
specialized historical debuggers, like Microsoft’s IntelliTrace
[13] of the visual studio, which allows viewing the executed
source code after executing it, but none of them provides the
capability to view the traced test case alongside the screen
capture of the system under test. The code tracer logs a
timestamp to every executed line of code. This allows a link
from any screen frame to the simultaneously executed line of
the test code and vice versa. Thus, advancing the frame code
line by code line is also possible with the viewer application
like in a traditional or historical debugger.

VIII. CONCLUSIONS
Testing graphical user interfaces (GUIs) is difficult. Test

cases should refer to interaction events and changes on the
screen. Capturing internal events and changes of screen
display is necessary to support subsequent debugging.
Recording screen videos offers an opportunity.

We emphasize various reasons why standard video
capturing techniques are not appropriate or sufficient for this
application: They consume too much memory, take too long
to capture, and still miss out relevant aspects. In addition,
viewing GUI test videos raises very different requirements
and demands.

We developed a number of concepts to meet the
challenges of automated video-documentation of GUI test
execution. These concepts were implemented and applied to
370 industrial GUI test cases. The speed and memory
consumption was measured in an experiment.

Industry application to real test scenarios at Capgemini
has shown that the tailored video-documentation of
automated GUI tests is a useful concept for debugging the
application under test. It helped in debugging failures. No
other known approach offers these capabilities and supports
the analysis of GUI tests and the debugging of the
applications under test in all aspects discussed above.

Most GUI test frameworks concentrate on the easy
description of test cases with specialized script languages or
the capture-replay-technique. However, the documentation
of the performed operations during test and the task of

debugging afterwards still deserve more attention. This work
has shown that it can save a lot of time in the testing and
debugging phase of a software development process. These
aspects are essential for effective and efficient GUI testing.
They are widely neglected in existing approaches of video-
documentation. The presented concepts provide solutions for
the aforementioned difficulties of the task of debugging GUI
tests.

REFERENCES
[1] G. J. Myers, The Art of Software Testing, 1st edition. John Wiley &

Sons, 1979.
[2] K. Beck, Test Driven Development. By Example. Addison-Wesley

Longman, Amsterdam, 2002.
[3] K. Schneider, Abenteuer Softwarequalität: Grundlagen und Verfahren

für Qualitätssicherung und Qualitätsmanagement. Dpunkt, 2007.
[4] “Ranorex.” [Online]. Available: http://¬www.ranorex.com
[5] TechSmith, “Camtasia.” [Online]. Available: http://-

www.techsmith.com/¬camtasia
[6] DebugMode, “Wink.” [Online]. Available: http://-

www.debugmode.com/¬wink
[7] “Tightvnc.” [Online]. Available: http://¬www.tightvnc.com
[8] “Ultravnc.” [Online]. Available: http://¬www.uvnc.com
[9] “Ultravnc screen recorder.” [Online]. Available: http://-

www.uvnc.com/¬screenrecorder
[10] RenderSoft, “Camstudio.” [Online]. Available: http://-camstudio.org
[11] Microsoft, “Expression Encoder Pro.” [Online]. Available:

http://¬www.microsoft.com/¬expression/¬products/-
encoderpro_overview.aspx

[12] Microsoft, “Team Foundation Server.” [Online]. Available:
http://¬www.microsoft.com/¬visualstudio/¬en-us/¬products/¬2010-
editions/¬team-foundation-server/¬overview

[13] Microsoft, “IntelliTrace.” [Online]. Available: http://-
msdn.microsoft.com/¬en-us/¬magazine/¬ee336126.aspx

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-oriented programming,”
ECOOP’97—Object-Oriented Programming, pp. 220–242, 1997.

[15] T. Sikora, “MPEG digital video-coding standards”, Signal Processing
Magazine, IEEE, vol. 14, no. 5, pp. 82–100, 1997.

[16] K. Patel, B. Smith, and L. Rowe, “Performance of a software MPEG
video decoder,” pp. 75–82, 1993.

[17] H. Holzmann, “Videounterstützte Ablaufverfolgung von Tests für
Anwendungen mit grafischer Benutzeroberfläche”, Bachelor Thesis,
Leibniz Universität Hannover, 2011

Article in a journal:
[18] Zimmermann et al., “What makes a Good Bug Report?”, IEEE

Transactions on Software Engineering, Vol. 35, No. 5, 2010
[19] A. Memon, “GUI Testing: Pitfalls and Process”, IEEE Computer, vol.

35, no. 8, pp. 87–88, 2002.
[20] D. Le Gall, “Mpeg: A video compression standard for multimedia

applications,” Communications of the ACM, vol. 34, no. 4, pp. 46–
58, 1991.

[21] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard”, Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–
576, 2003.

Article in a conference proceedings:
[22] K. Böllert, “On weaving aspects”, 1999, 1999 , Proc. ECOOP’99

Workshop on Aspect-oriented Programming, Lisbon, Portugal.

109

