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Abstract. Most real-world graphs collected from the Web like Web graphs and
social network graphs are incomplete. This leads to inaccurate estimates of graph
properties based on link analysis such as PAGERANK. In this paper we focus
on studying such deviations in ordering/ranking imposed by PAGERANK over
incomplete graphs. We first show that deviations in rankings induced by PAGER-
ANK are indeed possible. We measure how much a ranking, induced by PAGER-
ANK, on an input graph could deviate from the original unseen graph. More im-
portantly, we are interested in conceiving a measure that approximates the rank
correlation among them without any knowledge of the original graph. To this
extent we formulate the HAK measure that is based on computing the impact
redistribution of PAGERANK according to the local graph structure. Finally, we
perform extensive experiments on both real-world Web and social network graphs
with more than 100M vertices and 10B edges as well as synthetic graphs to show-
case the utility of HAK.

1 Introduction

Most real-world graphs collected from the Web like Web graphs and social net-
work graphs are incomplete or in other words their graph topology is not known
in entirety [19], especially if not crawled for a particular purpose or subset, but
extracted from existing crawls, such as Web archives. The goal of Web archive
crawlers is to capture as much as possible starting from some seed set within
some national domain or even broader, given the available but limited resources
[6]. Incompleteness is an inherent trade-off already in the design decision of
such an archive. Complicating matters further, Web archives are often not con-
structed in one piece but by merging partial crawls [13]. Additional reasons for
the incompleteness in Web archives include the restrictive politeness policies (i.e.,
robots.txt) or random timeouts of Web servers. Several studies on this topic have
shown that incompleteness is indeed a common issue [15], inevitably affecting
the graphs extracted from such crawls as well.
As a result, important graph properties and measures used for link analysis and
structural characterization like authority of vertices might be inherently flawed or
exhibit deviations from their original values. This is commonly observed where
users are typically agnostic to the incompleteness of the obtained graph, hoping
that the input graph is a reasonable representative sample of the underlying (un-
seen) original graph. Some of the well-known measures for computing authority
of vertices or relative ordering of vertex authorities based on random walks are
PAGERANK [22] and its variants [17, 11].
As an example, consider PAGERANK computed over the .gov Web graph that
we will analyze in detail later in this work. Here, the women.nasa.gov(Women@NASA)
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page has a high PAGERANK value and is subsequently found within the top 300
pages. However, on a closer examination we observe that most of its PAGERANK

is contributed by an in-link from the highly popular NASA homepage (nasa.gov).
If for some reason this particular in-link is not crawled, e.g., due to a tempo-
rary downtime or the decision by NASA to exclude their homepage from being
crawled, this would cause a large decrease in its PAGERANK and hence a severe
rank deviation in the obtained crawl.
One might argue that this is an unlikely case since important pages enjoy a high
priority and are therefore commonly crawled, but this might not always be the
case in reality. To support our claim we performed the following experiment. We
ranked pages in a graph constructed from a .de Web archive in 20123 based
on (1) inlinks and (2) PAGERANKS. The above mentioned graph considered only
links that emerged in 2012 [12]. We then checked if the top ranked pages in this
incomplete graph were indeed archived in that year. Our experiments show that
from among the top 1000 pages, ranked according to inlinks, roughly 30% are
contained in the archive. According to PAGERANK rankings, less than 20% of
the top 1000 pages are contained in the archive. With this small experiment we
show that high priority vertices can indeed be missed in real world crawls, which
can further cause a rank deviation in the obtained incomplete graph.
We, therefore, study the deviation in orderings/rankings imposed by PAGERANK

over incomplete graphs. Vertices in our input crawls are either completely crawled
(all neighbors are known) or are uncrawled (none of their neighbors are known),
which we refer to as ghost vertices. Based on this, the research questions we ask
are the following:

– RQ I : Do incomplete real-world graphs show a deviation in their PAGER-
ANK orderings when compared to full network topology?

– RQ II : How can we reliably measure the extent of such ranking deviations
for incomplete graphs?

Towards these, we perform extensive experiments on both real-world Web and
social network graphs with more than 100 million vertices and 10 billion edges.
We first establish empirically that real-world networks indeed show a deviation
in their PAGERANK orderings when not crawled completely compared to the
complete graph (RQ I). We observe ranking correlations (measured by Kendall’s
Tau) dropping down to 0.55 on Web graphs when only 50% of it is crawled.
Second, users and applications that use rankings induced by PAGERANK as a
feature for downstream ranking and learning tasks would naturally be interested
in estimating such a deviation from the (incomplete) input graph at hand as a
measure of confidence. Therefore, as an answer to RQ II, we propose a measure
called HAK (an acronym of the authors’ lastnames) that estimates the ranking
deviation of an incomplete input graph when compared to the original graph.

2 Related Work

The authors in [21] analyzed the conditions under which eigenvector methods like
PAGERANK and HITS can provide reliable rankings under perturbations to the
linkage patterns for a given collection. In particular, when some high ranked page

3 the archive has been generously provided to us by the Internet Archive
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Fig. 1: The neighborhood of a webpage in different subgraphs of the Web.

is missed as we discussed in the previous section, the resulting PAGERANK rank-
ings will be highly unstable. Boldi et al. [3] also show the paradoxical effects of
PAGERANK computation on Web graphs. They however focus on crawling strate-
gies to preserve page rank computation. In [26] the authors operate on a given
subset of vertices and consider the general problem of maintaining multi-scale
graph structures by preserving a distance metric based on PAGERANK among all
pairs of sampled vertices. Other authors investigated this problem before as well,
however, none of them focused on random walk algorithms, such as the widely
used PAGERANK, neither explored the effect of missing nodes in real-world Web
graphs [27, 23, 24].
The other area of related work comprises of graph sampling approaches which
can be broadly classified into two categories: traversal based methods [18, 28,
20] and random walk based methods [19, 14]. Graph-traversal based methods
employ breadth-first search (BFS) or the depth-first search (DFS) algorithm to
sample vertices and are typically shown to exhibit bias towards high-degree ver-
tices [28]. [20] compare various traversal based algorithms and define representa-
tiveness of a sample while proposing how to guide the sampling process towards
inclusion of desired properties. On the other hand, the random walk based meth-
ods are popular for graph sampling because they can produce unbiased samples
or generate samples with a known bias [29, 19, 14]. One of the popular sampling
algorithms used for Web graphs is the Forest Fire algorithm by [18], a generative
graph model, in which new edges are added via an iterative “forest fire” burn-
ing process where it is shown to produce graphs exhibiting a network community
profile plot similar to many real-world graphs. We use this approach in generating
synthetic real-world graphs.

3 Preliminaries and Problem

PageRank. As originally conceived, PAGERANK ranks vertices of a directed
graph G = (V,E) where V and E are the vertices and edges respectively, based
on the topological structure of the graph using random walks [22]. The problem
we are addressing in this paper is attributed to this random walk model behind
PAGERANK, representing the authority or importance of a vertex.
For some fixed probability α , a surfer at vertex v ∈ V jumps to a random vertex
with probability α and goes to a linked vertex with probability 1−α . The author-
ity of a vertex v is the expected sum of the importance of all the vertices u that
link to v. Consequently, a vertex receives a high PAGERANK value and is ranked
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at the top by ordering the webpages by importance when it is either connected by
many incoming edges or reachable from another important page.
We first define the notions of target graph, crawl and ghost vertices in the context
of incompleteness in graphs due to their collection process:

Definition 1 (Target graph). The subset of vertices (with the induced edges) of
a larger graph (e.g., the Web) that is theoretically reachable by a crawler given
its seeds, e.g., a domain, a top-level domain, or all webpages that belong to a
certain topic in case of focused crawlers. This graph would be available if every
link was followed and every page captured by the crawler, illustrated by the target
in Figure 1.

Definition 2 (Crawled graph or Crawl). The (incomplete) graph derived from
the set of webpages that have actually been visited by the crawler, discovered/linked
yet uncrawled pages are not included. This subset of the target graph is illustrated
by the crawl in Figure 1.

Definition 3 (Ghost vertex). Although a hyperlink on a crawled page points to
another page that belongs to the target graph, there is a chance the crawler never
visited and saved that page, i.e., it is not part the crawl. Such a page or vertex
is referred to as ghost vertex, shown by the gray vertices outside the crawl in
Figure 1.

Ranking Deviations. The deviation among two rankings induced by PAGERANK

is a global objective, independent of a specific query. Hence, local or relevance-
based measures such as nDCG are not applicable here. The most common metrics
to quantify rank correlation are Spearman’s Rho and Kendall’s Tau, which are
both similar as they are special cases of a more general correlation coefficient
and measure relative displacements.

(a) (b) (c) (d)

Fig. 2: Example graphs : Darker vertices have a higher importance (cp. Sec. 3).

In this work, we use Kendall’s Tau [16], ranging from [−1,1], with 1 correspond-
ing to a perfect rank correlation, 0 corresponding to no correlation and −1 to a
perfect inverse correlation, to compare the correlation/deviation of rankings com-
puted on the vertices of a crawl GC with respect to that of the target graph GT .
In Figure 2 we provide a few examples of possible graph structures, where partial
knowledge of the graph may affect the ranking returned by the PAGERANK val-
ues. We remark that in the next sections, we will also provide empirical evidence,
supporting the fact that there exists a ranking deviations in crawls of some real-
world graphs. In the first subfigure (a), we show the positive case of a DAG where
the partial knowledge of the graph will not cause any ranking deviations. As only
the topmost vertices shown here receive significantly more links than the others,
these are also the most important vertices. It is easy to see here that generating
a crawl from this structure by removing some vertices will not cause any signif-
icant changes in the ranking orderings of the crawl. In the next subfigure (b), a
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backlink has been introduced (left) that feeds back the importance of a top most
page to a previously unimportant page and its successors. This importance gets
propagated through the cycle which has been created due to the inserted backlink.
In the next subfigure (c), we illustrate the case of a crawl in which vertices are
removed uniformly at random. The chances here are that primarily unimportant
vertices are removed, which would still not cause much deviations in the ranking
orderings. Finally, if we remove any vertex from the cycle as shown in subfigure
(d), its succeeding vertices drastically lose in importance and hence, the ranking
among the pages in the crawl changes noticeably.

4 The HAK Measure

With our measure, we estimate quantitatively how reliable a crawl is with respect
to the relative ordering of the PAGERANK values on its vertices compared to
the corresponding target graph. To this end, we first try to estimate the size of
the target graph: Given the crawled vertex set and the distinct hyperlinks on the
corresponding webpages, some of which are pointing to an uncrawled page (ghost
vertex), how big is the target graph or a subgraph that would potentially impact
or contribute to the PAGERANK values of the vertices in the crawl? We show that
for simple crawling strategies where it can be assumed that each vertex is part of
the crawl independently from all other vertices with some sampling probability
ps, the size of the target graph can be estimated in terms of a very simple property
of the crawled vertices, namely, the fraction of its crawled neighbors, referred to
as fidelity. Secondly, we try to estimate the impact exerted by the vertices in the
target graph on the crawled vertices, which we in turn use to estimate the number
of discordant pairs in the expected rankings, like in Kendall’s Tau. Let C denote
the set of vertices of the crawl graph and let n be the number of vertices in this
graph. The main steps in our computation are as follows:

1. Estimate the size of the target graph by using connectivity properties of the
crawl. Let T represent the set of vertices in this target graph.

2. Estimate the impact (as functions of PAGERANK) of the vertices in C.
3. Assume that the vertices in T exert similar impacts on other vertices.
4. Estimate the number of discordant pairs due to impacts exerted by vertices

in T −C on vertices in C.

Estimating the Target Graph. Let N denote the number of vertices in the target
graph. We assume that the crawl is constructed by sampling vertices from the
target graph independently and uniformly at random with some probability ps.
We first estimate ps from the connectivity of the crawl, using a property that we
refer to as fidelity. Let dc (v) count the number of vertices v′ ∈C reachable from
v in one step. d (v) denotes the total out-degree of v in the target graph.

Definition 4 (Fidelity). The fidelity of a vertex v ∈ T , γ (v), is given by γ (v) =
dc(v)
d(v) and the average fidelity of all vertices in C is γ (C) = ∑v∈C γ(v)

n .

We will now show that E(γ (v)) = ps(1−P(d (v) = 0)).

Proposition 1. Let for some 0 < ps < 1, each vertex in the target graph is sam-
pled independently and uniformly at random with probability ps. For any v ∈ T ,
E(γ (v)) = ps(1−P(d (v) = 0)).



6 Holzmann et al.

Proof. The probability that a vertex has fidelity `/k is given by

P
(

γ (v) =
`

k

)
= P(dc (v) = `|d (v) = k) ·P(d (v) = k) =

(
k
`

)
p`s(1− ps)

k−`P(d (v) = k) .

The expected value of fidelity of T can now be computed as

E(γ (v)) = ∑
k≥1

∑
`≤k

`

k

(
k
`

)
p`s(1− ps)

k−`P(d (v) = k)

=ps ∑
k≥1

P(d (v) = k)
k

∑
`=1

(
k−1
`−1

)
ps

`−1(1− ps)
k−` = ps(1−P(d (v) = 0)).

With ps as the sampling probability, N · ps gives us the expected number of ver-
tices in the crawl. Using Proposition 1 we obtain N =

E(|C|)
E(γ(v)) (1−P(d (v) = 0)).

We note that for Web graphs P(d (v) = 0) is the probability that a webpage has no
links to other webpages, i.e., there exists a page with pure text and no links. Such a
scenario is extremely rare on the Web. Moreover, for synthetic graphs generated
using Gn,p one can show that P(d (v) = 0) = e−O(np), which goes to zero for
n→∞ and constant p. Hence, using the observed average γ (C) and the observed
size of the crawl, i.e., n, ignoring the multiplicative factor of 1−P(d (v) = 0) (as
P(d (v) = 0) = o(1) for all practical purposes), we can approximate N as n

γ(C)
.

PageRank and Impacts. Despite its incompleteness, PAGERANK can be com-
puted on the crawl graph by treating the ghost nodes as dangling nodes. We use
the personalized variant of PAGERANK for this, starting from the available nodes
in C as seeds (s. Section 5). Given this, for any vertex v in the crawl C, let π(v)
denote the value computed by PAGERANK and let N(v) denote the set of im-
mediate neighbors of v. PAGERANK of any vertex u can now be considered as:
π(u) = ∑v:u∈N(v)

π(v)
d(v) .

We introduce a new property, referred to as impact. The impact of a vertex v ∈
C on one of its neighbors u ∈ N(v) is defined as: Im(v,u) = π(v)/d(v)

π(u) . Hence,
the total impact on any vertex u ∈ V , received from all its incoming edges, is

1
π(u) ∑v:u∈N(v)

π(v)
d(v) , which is always 1. This implies that any extra impact of x

on a vertex will increase its PAGERANK by x times the current PAGERANK. The
total impact of a vertex v, Im(v) is then defined as:

Im(v) = ∑
u∈N(v)

Im(v,u) = ∑
u∈N(v)

π(v)/d (v)
π(u)

=
1

d (v) ∑
u∈N(v)

π(v)
π(u)

.

We denote the average of impacts of vertices in C as m(C) = ∑v∈C Im(v)
n .

Estimating the Impact of Ghost Vertices. We next compute the impact that
could have been exerted by the ghost vertices on the crawled vertices, if the
graph was complete and the ghost vertices existed. In a setting like ours, where
the PAGERANK is computed from the perspective of the known crawl, the ghost
nodes cannot have a bigger impact on the crawl than previously leaked to them.
Therefore, we build on the assumption that the impact of each vertex in the com-
plete target graph T is on average the same as for the crawl: Im(C). Hence, we
approximate the impact exerted by ghost vertices only as follows: I = |T −C| ·
Im(C) = n

(
1

γ(C)
−1

)
· Im(C).
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Some of this extra impact, generated due to ghost vertices, will be acquired by
some or all of the vertices in C, changing their PAGERANK values accordingly.
This is what eventually will lead to the deviation in rankings. The impact of the
ghost vertices can be divided among the vertices of the crawl in several ways. For
example, it can happen that the vertex with the lowest PAGERANK receives the
total impact, increasing its PAGERANK by a large factor. In this case the number
of discordant pairs is upper bounded by n−1. Moreover, we know from [21] that
vertices with low original PAGERANK scores will also have a low PAGERANK

value in slightly modified graphs. Therefore, the effect of the loss of informa-
tion because of incomplete crawls is observed mostly on the PAGERANKS of the
nodes higher in the original ranking. We checked experimentally several variants
for impact distributions and the best variant, which is affirmative with our tests on
real-world and synthetic graphs, is to distribute the total impact I equally among
all vertices. Hence, the expected number of impacted vertices that belong to the
crawled set will be: I = I · γ (C) . In the worst case, each of these impacted ver-
tices will result in forming a discordant pair with each of the unaffected vertex,
resulting in a number of discordant pairs of D = (n− I) · I. Based on that, HAK
is computed with respect to Kendall’s Tau as follows:

HAK =
#concordant pairs - #discordant pairs

# total pairs
=

n(n−1)
2 −D−D

n(n−1)
2

= 1−4· D
n(n−1)

.

5 Experiments

The objective of this evaluation is to assess ranking deviations using Kendall’s
Tau (cf. Sec. 3) for rankings induced by PAGERANK, computed on a complete
target graph vs. an incomplete crawl and compare it against our HAK measure.
In contrast to the Kendall’s Tau formula used in HAK, for assessing the real
rankings, ties were considered by using a variant, also known as Tau-b. We focus
only on high-ranked vertices, as these are typically more interesting in most
practical scenarios [21]. We compared the ordering among the top 30%, top 50%
and top 70% vertices of the crawl and target graph that appeared in both graphs
according to the corresponding PAGERANK values.
The rankings for each of the graphs are computed based on the PAGERANK val-
ues. While we employed the regular version PAGERANK on the crawl (with added
ghost vertices as sinks), we used the personalized variant of PAGERANK for run-
ning it on the target graph. The resulting PAGERANK values can be interpreted as
their importance with respect to these vertices or the domain represented by the
crawl. Both variants of PAGERANK ran for 30 iterations with the damping factor
parameter set to the frequently cited value of 0.85.

Experimental Setup. Our experiments require both target graphs and the crawls
necessary in order to compute how the rankings on both graphs differ and to
evaluate the performance of HAK to estimate this deviation. In reality, neither
obtaining the complete target graph is possible nor the actual crawl policy can be
determined accurately. To this extent, we consider very large (as complete as pos-
sible) real-world graphs under the assumption that those graphs are complete (Ta-
ble 1). We additionally simulate alternative topological structures by generating
synthetic graphs (Table 2). We then simulate crawls on these graphs using differ-
ent crawling strategies. For all graph and crawl combinations we ran PAGERANK
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GOV [25] DE4 UK [4] Friendster [2]

#V 301,128,778 247,641,473 39,454,746 68,349,466
#Vtarget 5,418,054 133,895,590 38,838,959 61,100,375
#E 2,111,229,433 14,795,732,782 936,364,282 2,586,147,869
#Etarget 180,657,788 10,085,242,536 928,939,162 2,575,600,737

Table 1: Statistics on the studied real-world graphs (#V : original number of vertices,
#E: original number of edges, #Vtarget: #target vertices, #Etarget: #target edges).
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Fig. 3: Ranking deviations measured and estimated for real-world graphs and crawls for
different fractions of uncrawled vertices.

on both crawl and target graphs and compared the rankings using Kendall’s Tau
to evaluate HAK.

Crawls and Ranking Deviations in Graphs. We aim to answer RQ I and justify
the need for estimating ranking deviations before employing PAGERANK for in-
complete graphs. We clearly observe that all real-world graphs exhibit a decreas-
ing τ with increasing block fraction (see Figure 3). Most acutely, τ decreases to
0.55 for the GOV.
Synthetic graphs like Gn,p and FFBacklinks (first and last row in Figure 4) ex-
hibit a similar trend with τ decreasing for increasing block fraction. On the other
hand, for the ScaleFree (second row) and ForeFire graphs (third row), we do
not witness much change in the ranking orderings, except in the BFS crawls.
A detailed study of the crawls reveals the reasons for such disparate trends for
ScaleFree and ForeFire: the crawling strategy combined with the underlying
structural properties of the graph sometimes lead to extremely small crawls (n <
1,000), much below the desired fraction. First, we observe a scarcity of back-
links in ForestFire and ScaleFree. That leads to these graphs to be DAG-like
without an inadequate number of cycles in the corresponding graphs (cp. Sec. 3).
PAGERANK computations over such graphs tend to finish quickly since the lack
cycles prohibit the random walk to re-cycle back into the graph. This results in
small high-fidelity crawls that do not exhibit large ranking deviations when highly
linked vertices are prioritized, explicitly (SEC) or by chance (BfsRnd and Bfs-
Geo). Only the BFS strategy that explicitly blocks random vertices causes a
deviation in these crawls, as top vertices may be missed as well (conceivable on
the Web for different reasons, e.g., restrictive policies and random failures).
Reinforcing our claim, the addition of backlinks in FFBacklinks resulted in a
growing ranking deviation with increasing block fraction. We argue that most of
the real-world graphs will not be DAG-like and will have backlinks inducing large
cycles. Moreover, the random walk nature of PAGERANK computation increases
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Graph generator #Edges Parameters

GGGn,p [8, 9] 299,722 p≈ 0.0003 (based on #E in Table 1)
ScaleFree[5] 21,732 α = 0.41,β = 0.54,γ = 0.05 (default)
ForestFire[18] 87,060 p f = 0.37, pb = 0.32 (most realistic [18])
FFBacklinks 96,262 p f = 0.37, pb = 0.32, pbacklink = 0.0005

Table 2: Synthetic graphs (all have 10,000 vertices).

the importance of these backlinks (or feedback loops) towards reaching an equi-
librium state. As the core structure of FFBacklinks still resembles the original
ForestFire graph, the observed rank deviation is much less severe as compared
to Gn,p.
In addition, we observe that the ranking deviations (in most of the presented
cases) increase when we consider a small fraction of the most important ver-
tices. This indicates that most of the low rank vertices in the target graph do not
flip their ranks with the more important ones in the crawl, leading to a lower ratio
of discordant pairs to the overall total number of pairs. On the other hand, crucial
to most applications are the ranking deviations of the high PAGERANK vertices,
thus making it essential to monitor them.
Finally, we observe that ranking deviation in the Web graphs shown in Figure 3
are interestingly similar to the random graphs in Figure 4 and less so with other
generative models like ForestFire or ScaleFree graphs. This, we believe, has
strong implications in explaining the structure of Web graphs.

Effectiveness of Effectiveness of HAK. We first discuss about the general appli-
cability of the HAK measure and then argue about the supporting experimental
evidence reported in Figures 3 and 4. We recall that the main assumption behind
the construction of HAK is that each of the unseen or ghost vertices from the
target graph would exert the same fraction of impact (on average) to the crawled
set as the actual vertices in the crawl (cp. Sec 4). We ensure this by construct-
ing the target graph such that each of its vertex has the same fraction of crawled
neighbors as the crawled vertices (computed by fidelity). This assumption would
not be followed by target graphs, which for example are DAG-like, because the
ghost vertices there might not have edges back into the crawl. We remark that
HAK cannot identify structures in target graph which are not similar to the crawl,
yet leading to severe ranking changes in the crawl. For instance, consider a very
small crawl with a very high fidelity and low impact. In such a case HAK would
always estimate a very low ranking deviation. It could in the worst happen that
there exist a few ghost vertices in the target graph with very high PAGERANK,
having outgoing edges to only the low rank vertices in the crawl. Our results in
figures 3 and 4, on the other hand, support the effectiveness of HAK in most of
the studied graphs and therefore also validate our assumptions behind HAK.
We first discuss our findings on synthetic graphs. HAK performs fairly well for
Gn,p, for instance with the BFS crawl strategy with 50% block fraction, we record
an absolute error of 0.02 (actual: 0.24, estimated: 0.26) for rank correlation of
top 30% vertices. The little ranking deviations in ScaleFree and ForestFire can
be attributed to the small crawls with high fidelity (γ ∈ [0.93,1.0]). As already
discussed, HAK in these cases would always result in a high value, which also
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Fig. 4: Ranking deviations measured and estimated with different synthetic graphs and
crawls for different fractions of uncrawled vertices (rows) as well as different crawling
strategies (columns).

explains HAK adapting to the trends. However, we observe a larger deviation
for BFS crawls in ScaleFree graphs. Here, HAK underestimates the ranking
deviation, which might reflect the existence of the worst case resulting in a simi-
lar estimation as the one described above for very small crawls. However, HAK
overestimates the deviation in FFBacklink (see the last 3 plots shown in Fig-
ure 4). We attribute this to the fact that the average impact of the crawl increases
in presence of backlinks (cp. Sec. 3), which is an overestimation of the actual
impact since Forest Fire is nevertheless the dominant topology in this graph.

We report more promising results in case of real-world graphs (s. Fig. 3). For
instance, for the UK graph we report an almost precise estimation (actual: 0.58,
estimated: 0.61). The observed trend in UK is more similar to that seen in to Gn,p
and FFBacklinks, which might also suggest existence of more backlinks in this
graph, leading to large cycles (cp. Fig. 2). In contrast, the deviation in Friendster
is less strong and slightly overestimated by HAK (actual: 0.76, estimated: 0.66)
similar to ForestFire.
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6 Conclusion

In this paper, we focused on the problem of PAGERANK deviations in Web graphs,
typically caused by incomplete crawling. We established that deviations in rank-
ing indeed do occur and can be drastic, as shown in our GOV graph where the
correlation among the rankings is only 0.55, measured by Kendall’s Tau. To this
effect, we proposed the HAK measure, which can reliably estimate such devia-
tions purely on the crawl without any knowledge of the original graph. Our results
suggest that incomplete Web graphs behave surprisingly similar to random graph
models and quite different from other generative Web models, such as Forest
Fire, in terms of PAGERANK deviations. Thus, this study on incompleteness in
Web graphs could be important in studying the structure of the Web as well.
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