International Journal on Digital Libraries
https://doi.org/10.1007/s00799-018-0251-0

@ CrossMark

Building and querying semantic layers for web archives (extended
version)

Pavlos Fafalios'® - Helge Holzmann' - Vaibhav Kasturia' - Wolfgang Nejdl’

Received: 15 September 2017 / Revised: 9 December 2017 / Accepted: 28 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Web archiving is the process of collecting portions of the Web to ensure that the information is preserved for future exploitation.
However, despite the increasing number of web archives worldwide, the absence of efficient and meaningful exploration
methods still remains a major hurdle in the way of turning them into a usable and useful information source. In this paper, we
focus on this problem and propose an RDF/S model and a distributed framework for building semantic profiles (“layers”) that
describe semantic information about the contents of web archives. A semantic layer allows describing metadata information
about the archived documents, annotating them with useful semantic information (like entities, concepts, and events), and
publishing all these data on the Web as Linked Data. Such structured repositories offer advanced query and integration
capabilities, and make web archives directly exploitable by other systems and tools. To demonstrate their query capabilities,
we build and query semantic layers for three different types of web archives. An experimental evaluation showed that a
semantic layer can answer information needs that existing keyword-based systems are not able to sufficiently satisfy.

Keywords Web archives - Semantic layer - Profiling - Linked data - Exploratory search

1 Introduction

Significant parts of our cultural heritage are produced and
consumed on the Web. However, the ephemeral nature of
the Web makes most of its information unavailable and lost
after a short period of time. Aiming to avoid losing important
historical information, a web archive captures portions of
the Web to ensure the information is preserved for future
researchers, historians, and interested parties in general.

This is an extended version of the paper: P. Fafalios, H. Holzmann, V.
Kasturia, & W. Nejdl, “Building and Querying Semantic Layers for
Web Archives”, 2017 ACM/IEEE-CS Joint Conference on Digital
Libraries, June 2017.

B Pavlos Fafalios
fafalios@L3S.de

Helge Holzmann
holzmann@L3S.de

Vaibhav Kasturia
kasturia@L3S.de

Wolfgang Nejdl
nejdl@L3S.de

L3S Research Center, Leibniz University of Hannover,
Appelstr. 9a, 30167 Hannover, Germany

Published online: 05 July 2018

Despite the increasing number of web archives worldwide,
the absence of efficient and meaningful exploration methods
still remains a major hurdle in the way of turning web archives
into a usable and useful source of information. The main
functionalities offered by existing systems are to find older
versions of a specific web page, to search on specific col-
lections, or to search using keywords and filter the retrieved
results by selecting some basic metadata values. However,
for a bit more complex information needs, which is usually
the case when exploring web archives, keyword-based search
leads to ineffective interactions and poor results [48]. This is
true especially for exploratory search needs where searchers
are often unfamiliar with the domain of their goals, unsure
about the ways to achieve their goals, or need to learn about
the topic in order to understand how to achieve their goals
[31]. Thus, for exploring web archives, there is the need to
go beyond keyword-based search and support more advanced
information seeking strategies [24,48,49].

To cope with this problem, we propose building semantic
profiles (“layers”) that describe semantic information about
the contents of archived documents. Specifically, we base
upon Semantic Web technologies and propose an RDF/S
[11] data model that allows: (a) describing useful metadata
information about each archived document, (b) annotating

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-018-0251-0&domain=pdf
http://orcid.org/0000-0003-2788-526X

P. Fafalios et al.

each document with entities, concepts and events extracted
from its textual contents, (c) enriching the extracted entities!
with more semantic information (like properties and related
entities coming from other knowledge bases), and (d) pub-
lishing all these data on the Web in the standard RDF format,
thereby making all this information directly accessible and
exploitable by other systems and tools. Then, we can use this
model for creating and maintaining a semantic repository
of structured data about a web archive. Note that the actual
contents of the web archive are not stored in the repository.
The proposed approach only stores metadata information that
allows identifying interesting documents and information
based on several aspects (time, entity, type, or property of
entities, etc.). Therefore, such a repository acts as a semantic
layer over the archived documents.

By exploiting the expressive power of SPARQL [36] and
its federated features [14,37], we can run advanced queries
over a semantic layer. For example, in case we have con-
structed a semantic layer for a news archive, we can run
queries like:

— find articles of 1995 discussing about New York lawyers

— find medicine-related articles published during 1995

— find out the most discussed politician during 1995

— find out politicians discussed in articles of 1990 together
with Nelson Mandela

— find out how the popularity of Barack Obama evolved
over time during 2007

— find articles similar to another article

Note that for all these queries we can directly (at query-
execution time) integrate information coming from online
knowledge bases like DBpedia [29]. For instance, regarding
the first query, for each lawyer we can directly access DBpe-
dia and retrieve his/her birth date, a photo and a description in
a specific language. Thus, semantic layers enable connecting
web archives with existing knowledge bases.

In a nutshell, in this paper we make the following contri-
butions:

— We introduce a simple but flexible RDF/S data model,
called Open Web Archive, which allows describing and
publishing metadata and semantic information about the
contents of a web archive.

— We detail the process of constructing semantic layers,
and we present an open source and distributed frame-
work, called ArchiveSpark2Triples, that facilitates their
efficient construction.

! For simplicity, when we say entity we refer to entity (e.g., Barack
Obama, New York, or Microsoft), concept (e.g., Democracy or Abortion)
or event (e.g., 2010 Haiti earthquake or 2016 US Election).

@ Springer

— We present (and make publicly available) three semantic
layers for three different types of web archives: one for
a versioned web archive, one for a non-versioned news
archive, and one for a social media archive.

— We showcase the query capabilities offered by semantic
layers through many interesting exploitation scenarios
and query examples.

— We detail the results of a comparative evaluation using a
set of 20 information needs of exploratory nature (provid-
ing also their relevance judgements). The results showed
that a semantic layer can satisfy information needs that
existing keyword-based systems are not able to suffi-
ciently satisfy. They also enabled us to identify problems
that can affect the effectiveness of query answering.

The rest of this paper is organized as follows: Sect. 2
motivates our work and presents related literature. Section
3 introduces the Open Web Archive data model and describes
the process and a framework for constructing semantic layers.
Section 4 presents three semantic layers for three different
types of web archives, as well as their query capabilities. Sec-
tion 5 presents evaluation results. Finally, Sect. 6 concludes
the paper and discusses directions for future research.

2 Motivation and related work

In this section, we first motivate our work by discussing infor-
mation needs that our approach intends to satisfy for enabling
more sophisticated search and exploration of web archives.
Then, we review related works by also discussing the differ-
ence of our approach.

2.1 Motivation

Working with large web archives in the context of the
ALEXANDRIA project,” we have identified the following
information needs that an advanced exploration system for
web archives should satisfy:

Q1 Information exploration. How to explore documents
about entities from the past in a more advanced and
“exploratory” way, e.g., even if we do not know the
entity names related to our information need? For exam-
ple, how can we find articles of a specific time period
discussing about a specific category of entities (e.g.,
philanthropists) or about entities sharing some charac-
teristics (e.g., born in Germany before 1960)?

2 The ALEXANDRIA project (ERC Advance Grant, Nr. 339233, http://
alexandria-project.eu/) aims to develop models, tools, and techniques
necessary to explore and analyze web archives in a meaningful way.

http://alexandria-project.eu/
http://alexandria-project.eu/

Building and querying semantic layers for web archives (extended version)

Q2 Information integration. How to explore web archives
by also integrating information from existing knowl-
edge bases? For example, how can we find articles
discussing about some entities and for each entity to
also retrieve and show some characteristics (e.g., an
image or a description in a specific language)? Cross-
domain knowledge bases like DBpedia contain such
properties for almost every popular entity. Moreover,
how to directly integrate information coming from mul-
tiple web archives? For example, how can we combine
information from a news archive and a social media
archive?

Q3 Information inference. How to infer knowledge by
exploiting the contents of a web archive? For example,
can we identify important time periods related to one or
more entities? Vice-versa, can we find out the most pop-
ular entities of a specific type in a specific time period
(e.g., most discussed politicians in articles of 2000)? Or
how can we understand the topic of a web page (e.g.,
find news articles related to medicine)?

Q4 Robustness (in information change). How to explore a
web archive by automatically taking into account the
change of entities over time? For example, the company
Accenture was formerly known as Andersen Consult-
ing, or the city Saint Petersburg was previously named
Leningrad. Such temporal reference variants are com-
mon in the case of high impact events, new technologies,
role changes, etc. How can we find documents from the
past about such entities without having to worry about
their correct reference?

Q5 Multilinguality. How to explore documents about enti-
ties from the past independently of the document lan-
guage (and thus of the language of the entity name)?
For instance, abortion is Avortement in French and
Schwangerschaftsabbruch in German. How can we find
documents about entities without having to worry about
the document and entity language?

Q6 Interoperability. How to facilitate exploitation of web
archives by other systems? How to expose information
about web archives in a standard and machine under-
standable format, that will always be available on the
Web, and that will allow for easy information integra-
tion? How to avoid downloading and parsing the entire
web archive for identifying an interesting part of it
related to a time period, some metadata values, and/or
some entities. For example, how can we gather a corpus
of articles of 2004 discussing about Greek politicians?

2.2 Related work

Below we discuss related works on profiling, exploring, and
analyzing web archives, and we discuss the differences and
limitations of our approach.

2.2.1 Profiling web archives

A semantic layer can be considered a way to profile the
contents of a web archive. AlSum et al. [4] exploit the
age of the archived copies and their supported domains, to
avoid sending queries to archives that likely do not hold the
archived page. Alam et al. [1] examine the size and preci-
sion trade-offs in different policies for producing profiles
of web archives (ranging between using full URIs and only
top-level domains). Bornand et al. [10] explore the use of
binary, archive-specific classifiers to determine whether or
not to query an archive for a given URI. Finally, Alam et al.
[2] introduce a random searcher model to randomly explore
the holdings of an archive by exploiting the co-occurrence of
terms.

Difference of our approach

The aim of all these works is to improve the effectiveness
of query routing strategies in a distributed archive search
environment. However, such profiling approaches do not
allow expressing semantic information about the contents
of the archived documents and thus cannot be exploited for
satisfying more sophisticated information needs like those
discussed in Sect. 2.1.

2.2.2 Exploring web archives
Online services

The Wayback Machine is a digital archive of the Web cre-
ated by the Internet Archive.? It currently contains more than
450 billion web pages, making it the biggest web archive in
the world. With the Wayback Machine, the user can retrieve
and access older versions of a web page. The results are dis-
played in a calendar view showing also the number of times
the URL was crawled. Wayback Machine also offers faceted
exploration of archived collections, thus allowing the user
to filter the displayed results by media type, subject, collec-
tion, creator, and language. Recently, it also started offering
keyword-based searching.

The Portuguese Web Archive (PWA)* is a research infras-
tructure that enables search and access to files archived from
the Web since 1996. PWA provides comprehensive crawls of
the Portuguese Web and supports both keyword- and URL-
based searching.

Memento’s Time Travel service® makes it easier for users
to browse the archived version of a web page by redirecting
them to the archive hosting the page. The user provides the

3 https://archive.org.

4 http://archive.pt.

> http://mementoweb.org.

@ Springer

https://archive.org
http://archive.pt
http://mementoweb.org

P. Fafalios et al.

URL of the web page and a date of interest and Time Travel
checks various web archives for finding an older version of
the web page closest to the time indicated by the user.

Archive-It® is a web archiving service from the Internet
Archive that helps harvesting, building and preserving collec-
tions of digital content. It currently supports keyword-based
searching, while the user can also filter the displayed results
based on several metadata values like creator, subject, and
language. Padia et al. [34] present an alternative interface
for exploring an Archive-It collection consisting of multiple
visualizations (image plot with histogram, wordle, bubble
chart, and timeline).

Research works

Regarding research works, Tempas [23] is a keyword-based
search system that exploits a social bookmarking service for
temporally searching a web archive by indexing tags and
time. It allows temporal selections for search terms, ranks
documents based on their popularity, and also provides query
recommendations. The new version of Tempas [26] makes
use of temporal link graphs and the corresponding anchor
texts. The authors show how temporal anchor texts can be
effective in answering queries beyond purely navigational
intents, like finding the most central web pages of an entity
in a given time period.

Kanhabua et al. [28] propose a search system that uses
Bing for searching the current Web and retrieving a ranked
list of results. The results are then linked to the Wayback
Machine thereby allowing keyword search on the Internet
Archive without processing and indexing its raw contents.

Vo et al. [47] study the usefulness of non-content evi-
dences for searching web archives, where the evidences are
mined only from metadata of the web pages, their links and
the URLs.

ArchiveWeb [17] is a search system that supports collab-
orative search of archived collections. It allows searching
across multiple collections in conjunction with the live web,
grouping of resources, and enrichment using comments and
tags.

Jackson et al. [27] present two prototype search interfaces
for web archives. The first provides facets to filter the dis-
played results by several metadata values (like content type
and year of crawl), while the other is a trend visualization
inspired by Google’s Ngram Viewer.

Singh et al. [42] introduce the notion of Historical Query
Intents and model it as a search result diversification task
which intends to present the most relevant results (for free-
text queries) from a topic-temporal space. For retrieving and
ranking historical documents (e.g., news articles), the authors

6 https://archive-it.org.

@ Springer

propose a novel retrieval algorithm, called HistDiv, which
jointly considers the aspect and time dimensions.

Expedition [41] is a time-aware search system for schol-
ars. It allows users to search articles in a news collection by
entering free-text queries and choosing from four retrieval
models: Temporal Relevance, Temporal Diversity, Topical
Diversity, and Historical Diversity. The results are presented
in a newspaper-style interface, while entity filters allows
users refine the results.

The work by Matthews et al. [32] proposes Time Explorer,
an application designed to help users see how topics and
entities associated with a free-text query change over time.
By searching on time expressions extracted automatically
from text, Time Explorer allows users to explore how topics
evolved in the past and how they will continue to evolve in
the future.

Difference of our approach

Although most of the existing approaches offer user-friendly
interfaces, they cannot satisfy more complex (but common)
information needs like those described in Sect. 2.1. By bas-
ing upon semantic technologies, a semantic layer allows
to semantically describe the contents of a web archive and
to directly “connect” them with existing information avail-
able on online knowledge bases like DBpedia. In that way,
we are able not only to explore archived documents in a
more advanced way, but also integrate information, infer new
knowledge, and quickly identify interesting parts of a web
archive for further analysis.

A similar approach to our work has been recently pro-
posed by Page et al. [35]. In this work, the authors build
a layered digital library based on content from the Live
Music Internet Archive. Starting from the recorded audio and
basic information in the archive, this approach first deploys
a metadata layer which allows an initial consolidation of
performer, song, and venue information. A processing layer
extracts audio features from the original recordings, work-
flow provenance, and summary feature metadata, while a
further analysis layer provides tools for the user to com-
bine audio and feature data, discovered and reconciled using
interlinked catalogue and feature metadata from the other
layers. Similar to our approach, the resulting layered dig-
ital library allows exploratory search across and within its
layers. However, it is focused on music digital libraries and
requires the availability of a large amount of metadata which
is not usually the case in web archives. On the contrary, our
approach focuses on entity-centric analysis and exploration
of an archived collection of documents.

The main drawback of our approach is its user-friendliness
since, currently, for querying a semantic layer one has to
write structured (SPARQL) queries. However, user-friendly
interfaces can be developed on top of semantic layers that

https://archive-it.org

Building and querying semantic layers for web archives (extended version)

dc:date dc:date

|

rdfs:Literal
de:titl q ot
Elitle o rdfs:Literal [e—dctite
dctformat . dc:format]
rdfs:Literal f

#

schema:mentions

oae:position rdfs:Literal
oae:donfidence -
rdfs:Literal

oae’score
rdfs:Literal
skos:Concept

oae:Entity

dc:hasVersion

- |
owa:ArchivedDocument -
_1 m owa:VersionedDocument

oa:hasTarget

* oae:detectedAs
1 rdfs:Literal

oa:hagBody
oae:hasMatchedURI
rdfs:Resource

“{ oa:Annotation

*

owa:firstCapture .
f i rdfs:Literal

wa:lastCapture N
rdfs:Literal

dc:references

I

rdfs:Resource

owa:ArchivedDocument

oa:hasTarget

owa: http://13s.de/owa/

oa: http://www.w3.org/ns/oa#

oae: http://www.ics.forth.gr/isl/oae/core#
dc: http://purl.org/dc/terms/

skos: http://www.w3.0rg/2004/02/skos/core#

wa:numOfCaptures

i

rdfs:Literal

’ owa:VersionedDocument

schema: http://schema.org/
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

Fig.1 The Open Web Archive data model

will allow end-users to easily explore them. Moreover, we
can directly exploit systems like Sparklis [19] and SemFacet
[6] that allow to explore the contents of semantic repositories
through a Faceted Search-like interface [38,45]. There are
also approaches that translate free-text queries to SPARQL
(like [46]). Providing such user-friendly interfaces on top
of semantic layers is out of the scope of this paper but an
important direction for future research.

2.2.3 Analyzing web archives

EverLast [5] is a web archiving framework built over a
peer-to-peer architecture. It supports human-assisted archive
gathering and allows for time-based search and analysis. It
indexes the documents by term and time where each term is
assigned to a peer responsible for managing its index.

Gossen et al. [20] propose a method to extract inter-
linked event-centric document collections from large-scale
web archives. The proposed method relies on a specialized
focused extraction algorithm which takes into account both
the temporal and the topical aspects of the documents.

Lin et. al. [30] propose a platform for analyzing web
archives, called Warcbase, which is built on Apache HBase,’
a distributed data store. Storing the data using HBase allows
the use of tools in the Hadoop ecosystem for efficient ana-
lytics and data processing. Warcbase also provides browsing
capabilities similar to the Wayback Machine allowing users
to access historical versions of captured web pages.

Finally, ArchiveSpark [25] is a programming framework
for efficient and distributed web archive processing. It is
based on the Apache Spark cluster computing framework?®
and makes use of standardized data formats for analyzing
web archives. The ArchiveSpark2Triples framework intro-

7 https://hbase.apache.org/.
8 https://spark.apache.org/.

duced in this paper is an extension of ArchiveSpark for
efficiently creating semantic layers for web archives (more
in Sect. 3.3).

3 Building semantic layers

3.1 The “Open Web Archive” data model

We first introduce an RDF/S data model for describing meta-
data and semantic information about the documents of a web
archive. Figure 1 depicts the proposed model, which we call
Open Web Archive data model.”

We have defined two new classes and three new properties,
while we also exploit elements from other established data
models. The class owa : ArchivedDocument represents
a document that has been archived. An archived document
may be linked or may not be linked with some versions,
1.e., instances of owa : VersionedDocument. For exam-
ple, an archived article from the New York Times corpus
[40] does not contain versions. On the contrary, Internet
Archive contains versions for billions of web sites. For the
case of versioned web archives, and with correspondence
to the Memento Framework (RFC 7089) [43], an archived
document actually corresponds to an Original Resource
and a versioned document to a Memento. An archived
document containing versions can be also associated with
some metadata information like the date of its first cap-
ture (using the property owa: firstCapture), the date
of its last capture (using the property owa : lastCapture)
as well as its total number of captures (using the property
owa :numOfCaptures).

An archived or versioned document can be associated with
three main kinds of elements: (i) with metadata information

9 The specification is available at: http://13s.de/owal/.

@ Springer

https://hbase.apache.org/
https://spark.apache.org/
http://l3s.de/owa/

P. Fafalios et al.

dc:date
06.01.2012 06:40
dc:references
/.. dc; t
bttp:// Hcforma “text/htm!”]

de:title
H “An example Page”]

schema:mentions

’ dbo:TennisPlayer ‘
N

rdf:type "-:

dbr:Roger_Federer

oae:hasMatchegURI 212
oae:position

dc:references
*ee

rdf-type schema:mentions

’ owa:ArchivedDocument ‘

------ J'
rdf:type
9 *ee

rdf:type

oae:detectedAs

owa: http://13s.de/owa/

dc: http://purl.org/dc/terms/

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
schema: http://schema.org/

oae: http://www.ics.forth.gr/is|/oae/core#

Fig.2 Describing an archived article (non-versioned) using the Open Web Archive data model

like date of publication or capture, title of document, and
format (mime type), (ii) with other archived or not docu-
ments (i.e., links to other web pages), and (iii) with a set of
annotations. For describing some of the metadata we exploit
terms of the Dublin Core Metadata Initiative.'® For describ-
ing an annotation, we exploit the Open Annotation Data
Model!! [39] and the Open Named Entity Extraction (NEE)
Model'? [13]. The Open Annotation Data Model specifies
an RDF-based framework for creating associations (annota-
tions) between related resources, while the Open NEE Model
is an extension that allows describing the result of an entity
extraction process. An annotation has a target, which in our
case is an archived or versioned document, and a body which
is an entity mentioned in the document. We can also directly
relate an archived or versioned document with an entity by
exploiting the property “mentions” of schema.org.'® This can
highly reduce the number of derived triples. An entity can be
associated with information like its name, a confidence score,
its position in the document, and a resource (URI). The URI
enables to retrieve additional information from the Linked
Open Data (LOD) cloud [21] (like properties and relations
with other entities).

Figure 2 depicts an example of an archived non-versioned
article. We can see some of its metadata values (date, format,
title), its references to other web pages, and its annotations.
We notice that the entity name “Federer” was identified in
that document. We can also see that this entity has been
linked with the DBpedia resource corresponding to the tennis
player Roger Federer. By accessing DBpedia, we can now
retrieve more information about this entity like its birth date,
an image, a description in a specific language, etc. Such links

10 http://dublincore.org/.
T http://www.openannotation.org/spec/core/.
12 http://www.ics.forth.gr/isl/oae/.

13 http://schema.org/mentions.

@ Springer

to DBpedia can also take the temporal aspect into account.
For example, we can provide entity URIs that lead to DBpe-
dia entity descriptions as they were at the time the web page
was captured (e.g., by exploiting DBpedia archives provided
by Memento!?).

Figure 3 depicts an example of an archived web page con-
taining versions. Now, each version has its own metadata,
annotations, and references to other web pages. We notice
that the event name “Euro 2008 was identified in the first
version of the archived document and was linked to the DBpe-
dia resource corresponding to the soccer tournament UEFA
Euro 2008. The archived document is also associated with
metadata information related to its versions. Specifically, we
can see the date of its first capture, the date of its last capture,
and its total number of captures. In addition, by exploiting
the same-as property of OWL Web ontology language [7],
we can state that a specific version of a URL is the same
as another version (e.g., versions 2 and 3 in our example).
Thereby, we can avoid storing exactly the same data for two
identical versions. (Redundancy is a common problem in web
archives.)

Extensibility

The proposed model is highly extensible. For instance, we
can exploit the VoID Vocabulary [3] and express dataset-
related information like statistics (number of triples, number
of entities, etc.), creation or last modification date, the subject
of the dataset, and collection from which the dataset was
derived. Likewise, one may exploit the PROV data model'>
and store provenance-related information (e.g., which tool
was used for crawling the documents or for annotating them,
what organizations or people were involved in the crawling
or annotation process, etc.).

14 http://mementoweb.org/depot/native/dbpedia/.
15 https://www.w3.org/TR/prov-dm/.

http://dublincore.org/
http://www.openannotation.org/spec/core/
http://www.ics.forth.gr/isl/oae/
http://schema.org/mentions
http://mementoweb.org/depot/native/dbpedia/
https://www.w3.org/TR/prov-dm/

Building and querying semantic layers for web archives (extended version)

hd dc:date

H 06.01.2012 06240| ’ dbo:SoccerTournament ‘
dc:format A
rdf-type’

: dc:titl
deireferences ’%[“An example Page”] dbr:UEFA_Euro_2008

http://archive.org/1/... .
dc:hasVersion oae:hasMatchedURI 728

owa:firstCapture

06.01.2008 06:40
22.05.2014 18:01

owa:numOfCaptures

owa:lastCapty

I
d)

:
/\

schema:mentions
rdfitype el

oae:position

http://www.example.com/ —-;(-j}j"type oae:confidence (085

owa:VersionedDocument

dFt “Euro 2008”
rdf:type oae:detectedAs

schema:mentions
Xy

oae:Entity '"};}‘I. type

owa: http://13s.de/owa/

dc: http://purl.org/dc/terms/

rdf: http:/)awww.w&org/ 1999/02/22-rdf-syntax-ns#
schema: http://schema.org/

de:hasVeersion oae: http://www.ics.forth.gr/isl/oae/core#

L—Seee owl:http://www.w3.0rg/2002/07/owl#

y

’ owa:ArchivedDocument ‘

dc:hasVe

Fig.3 Describing an archived web page (versioned) using the Open Web Archive data model

% Extraction of
}) main content Extraction) Generation of
[and metadata and Linking RDF triples

Web Archive WARC/CDX NITF % _ AIDA Q

Entity Schema-based

! . STORAGE » Ent |ty
PubI!cat|on (F (Enrichment
optensy) F (optionally)
Linked Open Data . \-—‘ S
il PN ol

Fig.4 The process of constructing a semantic layer

Update 3.2 The construction process

Since the contents of the archived documents never change, Figure 4 depicts the process of constructing a semantic layer.
we can easily update a semantic layer by just adding triples ~ The steps are the following:
in the RDF repository. For example, we can add triples that

describe more metadata about the archived documents, or — Reading of main content and metadata. We first extract
triples that describe more information about the entities like the main content (full text) from each archived docu-
properties, characteristics, or associations with other entities. ment (for annotating it with entities), and we also read

For the case of versioned web archives, we can also include its metadata. This, of course, depends on the format
new versions in the semantic layer. However, in that case we used for storing the archive. For example, WARC (ISO

should also update the date of last capture and the total num-
ber of captures of the corresponding archived documents.

@ Springer

P. Fafalios et al.

28500:2009)'° is the standard format for storing web
crawls, CDX!7 is widely used for describing metadata
of web documents, while NITF (News Industry Text
Format)'® is a standard XML-based format for storing
and sharing news articles. For extracting the main con-
tent from HTML web pages, we should also remove the
surplus around the main textual content of a web page
(boilerplate, templates, etc.). We can also extract any
other information related to an archived document that
we may want to semantically describe, like the title of
the web page or links to other web pages.

— Entity extraction and linking. We apply entity extraction
and linking in the full text of each archived document for
detecting entities, events, and concepts mentioned in the
document and associating them with web resources (like
DBpedia/Wikipedia URIs). TagMe [18], AIDA [22],
and BabelFy [33] are well-known entity extraction and
linking tools with satisfactory performance in entity dis-
ambiguation.

— Schema-based generation of RDF triples. Now, we
exploit the Open Web Archive data model, as well
as any other needed vocabulary/ontology, for generat-
ing the RDF triples that describe all the desired data
related to the archived documents (metadata, entities,
etc.). For representing the extracted entities (instances
of oa:Annotation,ocae:Entity,dc:Event, and
dc:Concept), we can use blank nodes [8] (since such
information does not need to be assigned a unique URI).
We can use blank nodes for also naming the archived
or versioned documents (instances of owa : Archived
Document or owa:VersionedDocument) in case
no URLs are given by the archive provider and no other
URLSs can be used (e.g., links to the Wayback Machine).
Moreover, for the case of versioned documents, if a spe-
cific version of a document is the same as an older version
of the same document (e.g., in case they have the same
checksum), we can add a same-as link starting from the
newer document and pointing to the older one (thereby
avoiding storing identical information).

— Entity enrichment (optionally). We can enrich the
extracted entities with more information coming from
other knowledge bases (like properties, characteris-
tics, and relations with other entities). The LOD cloud
contains hundreds of knowledge bases covering many
domains. In that way the semantic layer can directly
offer more data about the extracted entities, allowing for
more sophisticated query capabilities and faster query

16 https://iipc.github.io/warc-specifications/specifications/warc-
format/warc-1.0/.

17 https://iipc.github.io/warc- specifications/specifications/cdx-
format/cdx-2006/.

18 https://iptc.org/standards/nitf/.

@ Springer

answering, without requiring access to external knowl-
edge bases. This step can be also performed after the
construction of the semantic layer, at any time, since we
just have to add triples describing information about the
entities in the repository.

— Storage. The derived RDF triples are stored in a triple-
store (e.g., OpenLink Virtuosol9). Now, we can access
the triplestore and query the semantic layer through
SPARQL.

— Publication (optionally). We can make the triplestore
publicly available through a SPARQL endpoint and/or as
Linked Data. This will allow other applications to directly
access and query the semantic layer.

3.3 The “ArchiveSpark2Triples” framework

ArchiveSpark [25] is a programming framework for effi-
ciently analyzing web archives stored in the standard WARC/
CDX format. The core of ArchiveSpark is its unified data
model which stores records in an hierarchical way, starting
with the most essential metadata of a web page like its URL,
timestamp, etc. Based on this metadata, ArchiveSpark can
run basic operations such as filtering, grouping, and sorting
very efficiently. In a step-wise approach, the records can be
enriched with more information by applying external mod-
ules, called enrich functions. An enrich function can call any
third-party tool to extract or generate new information from
the contents of a web page. These functions can be fully
customized and shared among researchers and tasks.

ArchiveSpark2Triples®® is an extension of ArchiveS-
park that automates the construction of a semantic layer.
It reads a web archive and outputs information about its
resources as well as derived information in the Notation3
(N3) RDF format based on the Open Web Archive data model.
Internally, ArchiveSpark2Triples defines three types of doc-
uments: archived document (instance of owa : Archived
Document), versioned document (instance of owa:
VersionedDocument), and same-as versioned document
(instance of owa:VersionedDocument which consti-
tutes a revisit-record, i.e., duplicate of a previous capture).
In more detail:

— Anarchived document represents all versions of the same
web page, i.e., all records with the same URL. Its triples
reflect the web page as one unit, including the number of
captures in the web archive, the timestamps of the first
and last capture as well as pointers to the corresponding
versioned documents.

— A versioned document represents each individual cap-
ture of a web page, i.e., every record of a web page in

19 https://virtuoso.openlinksw.com/.
20 https://github.com/helgeho/ ArchiveSpark2Triples.

https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.0/
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2006/
https://iipc.github.io/warc-specifications/specifications/cdx-format/cdx-2006/
https://iptc.org/standards/nitf/
https://virtuoso.openlinksw.com/
https://github.com/helgeho/ArchiveSpark2Triples

Building and querying semantic layers for web archives (extended version)

the archive. The assignment of URLs to the versioned
documents is customizable and thus can be defined by
the user. By default, the triples of such a document only
include the date of the capture and its mime type (e.g.,
text, image, etc.). However, the framework supports to
extend this easily by accessing and transforming into
triples any property of ArchiveSpark’s data model. If this
step involves enrich functions, the required content of
the web page is seamlessly integrated by ArchiveSpark’s
enrichment mechanisms. In our case, we can use enrich
functions to extract the title of a page, its links to other
pages, and its entities. The extraction of entities requires
an additional module which uses the entity extraction and
linking system Yahoo FEL [9]. The corresponding enrich
function is available under FEL4ArchiveSpark.?!

— A same-as versioned document represents an already
archived web page whose content has not been changed.
In this case, a same-as property pointing to the previous
record is only created. The way in which duplicates are
identified is not part of the framework and can be defined
as part of the generation workflow.

Finally, defining the vocabularies to use for producing the
triples is part of the generation workflow and thus can be
customized by the user. An example of a workflow is shown
in Listing 1.%2

Efficiency

ArchiveSpark2Triples gains its efficiency from the efficiency
of ArchiveSpark, which is mainly a result of the two-way
approach that is used for data loading and access [25]. An
archived collection to be used with ArchiveSpark always con-
sists of two parts, the WARC files containing the data records
with headers and payloads, and the CDX files containing
only basic metadata such as URLSs, timestamps and datatype
(which are considerably smaller in size). Hence, operations
that rely exclusively on information contained in the meta-
data can be performed very efficiently, e.g., filtering out items
of a certain type. Eventually, if operations need to be per-
formed on the actual contents, only the required records are
accessed using location pointers in the CDX files. ArchiveS-
park2Triples benefits from this approach, since records of
a datatype other than fext/html, such as images and videos,
can be filtered out very fast. In addition, all properties of the
archived documents and the majority of properties of the ver-
sioned documents can be generated purely based on metadata
and thus, very efficiently. In fact, the payload is accessed only

21 https://github.com/helgeho/FEL4ArchiveSpark.

22 The corresponding Jupyter Notebook is available at: https://github.
com/helgeho/ArchiveSpark2Triples/blob/master/notebooks/Triples.

ipynb.

for applying enrich functions, e.g., for extracting the title of
a web page, its entities, etc. However, these are only part
of the same-as versioned documents that do not constitute
duplicates.

The most expensive task in our pipeline is the entity extrac-
tion process, performed by FEL4ArchiveSpark using Yahoo
FEL [9] (a lightweight and very efficient entity extraction
and linking system). To avoid extraordinarily long runtimes,
FELA4ArchiveSpark supports to define a timeout (set to 10 s
per record in our experiments). Additionally, we consider
only web pages with a compressed size of less than 100
KB, as larger file sizes are unlikely to constitute a web
page and may indicate a malformed record. Although the
described steps are considered quite efficient, the actual time
for the entire workflow depends on the dataset size, the nature
of the data as well as the used computing infrastructure.
Indicatively, the Hadoop cluster used in our experiments for
producing a semantic layer for a web archive of about 9 mil-
lions web pages consisted of 25 compute nodes with a total
of 268 CPU cores and 2,688 GB RAM (more about this web
archive in Sect. 4.2). While the available resources strongly
depend on the load of the cluster and vary, we worked with
110 executors in parallel most of the time, which resulted in
aruntime of 24 h for processing the entire collection of 474.6
GB of compressed WARC and CDX files.

4 Case studies

In this section, we present three semantic layers for three
different types of web archives and we showcase their query
capabilities. The semantic layers are publicly available for
experimentation and further research.?

4.1 A semantic layer for a news archive

We created a semantic layer for the New York Times (NYT)
Annotated Corpus [40] (a non-versioned news archive).
The corpus contains over 1.8 million articles published by
the NYT between 1987 and 2007. We filtered out articles
like memorial notices, corrections, letters, captions, etc.,
which actually are not articles. This reduced their number to
1,456,875. For each article in the corpus, a large amount of
metadata is provided. In this case study, we exploited only the
article’s URL, title and publication date. Of course, one can
exploit any other of the provided metadata (like author, tax-
onomic classifiers, etc.) and extend the semantic layer with
more triples describing these metadata fields.

We used TagMe [18] for extracting entities from each arti-
cle using a confidence score of 0.2. For each extracted entity,

23 http://13s.de/owa/semanticlayers/.

@ Springer

https://github.com/helgeho/FEL4ArchiveSpark
https://github.com/helgeho/ArchiveSpark2Triples/blob/master/notebooks/Triples.ipynb
https://github.com/helgeho/ArchiveSpark2Triples/blob/master/notebooks/Triples.ipynb
https://github.com/helgeho/ArchiveSpark2Triples/blob/master/notebooks/Triples.ipynb
http://l3s.de/owa/semanticlayers/

P. Fafalios et al.

Iimport de.l3s.archivespark._
2import de.l3s.archivespark.implicits._

3import de.l3s.archivespark.specific.warc._

4import de.l3s.archivespark.specific.warc.specs._
simport de.l3s.archivespark.specific.warc.implicits._
6import de.l3s.archivespark.enrich._

7import de.l3s.archivespark.enrich.functions._
gimport de.l3s.archivespark.enrich.dataloads._
9import de.l3s.archivespark.enrichfunctions.fel._
l0import de.l3s.archivespark2triples._

Ilimport org.apache.hadoop.io.compress.GzipCodec

12

13// Load the Entity Linking model (FEL)

14val modelFile = "english-novl5.hash"
15sc.setCheckpointDir ("spark_checkpoint")
l6sc.addFile("hdfs:///user/holzmann/" + modelFile)

17

18// Load the web archive collection

(filter duplicates and very big records)

19ArchiveSpark2Triples.versionUrl = r => s"https://wayback.archive-it.org/2950/${r.timestamp}/S$S{r.originalUrl}"

20val collection = "ArchiveIt-Collection-2950"

21val cdxPath = s"/data/archiveit/$collection/cdx/*.cdx.gz"
2val warcPath = s"/data/archiveit/Scollection/warc"

23val

raw = ArchiveSpark.load(sc, WarcCdxHdfsSpec (cdxPath, warcPath))

24val records = raw.distinctValue(_.get) ((a, b) => a).filter(_.compressedSize < 1024 * 100).cache // 100 kb

25

26// Select successful responses of type HTML and detect duplicates
27val responses = records.filter(r => r.status == 200 && r.mime == "text/html")
28val earliestDigests = responses.map(r => ((r.surtUrl, r.digest), r))

29 .reduceByKey{ (rl, r2) => if (rl.time < r2.time) rl else r2 }
r)).join(earliestDigests) .map{case (_, records) => records}

30val duplicates = records.map(r => ((r.surtUrl, r.digest),
31.filter{case (rl, r2) => rl.time != r2.time}
32

33// Generate ArchivedDocument triples representing distinct web pages
34val versions = earliestDigests.map{case (_, r) => r}.union(duplicates.map{case (rl, r2) => rl})
35val documentTriples = ArchiveSpark2Triples.generateDocs (versions)

36
37// Create "sameAs triples" from duplicates

33val sameAsTriples = ArchiveSpark2Triples.generateSameAsVersions (duplicates)

39

40// Generate VersionedDocument triples with title and entities
repartitioned = earliestDigests.map{case (_, r) => r}.repartition(5000)

41val
#2val title = HtmlText.of (Html.first("title"))

43val responsesWithTitles = repartitioned.enrich(title)
#val fel = FELwithTimeOut (scoreThreshold = -4, modelFile =

46

modelFile) .on (HtmlText)
45val responsesWithEntities = responsesWithTitles.enrich(fel)

47val versionTriples = ArchiveSpark2Triples.generateVersionsMapped (responsesWithEntities) {(record, uid, doc) =>

48val recordTitle = record.value(title).getOrElse("")

49val recordEntities = record.value(fel).getOrElse(Seq.empty)

sodoc.appendTriples("dc:title", s"""\"SrecordTitle\"""") .appendChildren ("schema:mentions", {
sirecordEntities.zipWithIndex.map{case (entity, i) => TripleDoc(s"_:eSuid-$i", "oae:Entity", Seq(
52"oae:confidence" -> Seqg(s""""S${entity.score}"”"xsd:double"""),

53"oae:detectedAs" -> Seqg(s"""\"S{entity.span}\""""),

54"oae:position" -> Seqg(s""""S${entity.startOffset}"""xsd:integer"""),

55 "oae:hasMatchedURI" -> Seqg(s"<http://dbpedia.org/resource/${entity.annotation}>")))1}})}

56
57// Sort and store with headers

s8val headers = TripleHeader.append("oae" -> "http://www.ics.forth.gr/isl/oae/core#")

s9val triples = ArchiveSpark2Triples.toStringsSorted (headers,

documentTriples, sameAsTriples, versionTriples)

e0triples.saveAsTextFile(s"Scollection-Triplesl.gz", classOf[GzipCodec]

Listing 1 An example of a workflow for generating a Semantic Layer

we stored its name (surface form), its URI and its confi-
dence score. Table 1 shows the number of articles and distinct
entities per year. In total, 856,283 distinct entities of several
types were extracted from the NYT articles. Indicatively, the
semantic layer has associated the articles with 304,502 dis-
tinct entities of type Person (i.e., of rdf:type http://dbpedia.
org/ontology/Person), 86,237 of type Location, and 54,585
of type Organization. Regarding the entities of type Per-
son, 63,537 are athletes, 23,974 are artists, and 8,818 are
politicians. The constructed semantic layer contains totally
195,958,390 triples.

@ Springer

4.2 A semantic layer for a web archive

Using ArchiveSpark2Triples, we created a semantic layer for
the Occupy Movement 2011/2012 collection,?* which has
been generously provided to us by Archive-It. The collection
contains 9,094,573 captures of 3,036,326 web pages related
to protests and demonstrations around the world calling for
social and economic equality. For each version, we stored its
capture date, its title, its mime type and its extracted enti-
ties (using a confidence score of -4), while for each distinct

24 https://archive-it.org/collections/2950.

http://dbpedia.org/ontology/Person
http://dbpedia.org/ontology/Person
https://archive-it.org/collections/2950

Building and querying semantic layers for web archives (extended version)

Table 1T Number of articles and distinct entities per year contained in
the semantic layer of the NYT corpus

Table 2 Number of tweets and distinct entities per month contained in
the semantic layer of the tweets collection

Year Number of articles Number of distinct entities Month Number of tweets Number of distinct entities
1987 98,311 201,245 01.2016 110,250 56,244

1988 96,508 205,745 02.2016 111,370 57,557

1989 94,465 201,362 03.2016 123,445 61,184

1990 89,577 200,496 04.2016 114,697 59,844

1991 74,298 188,402 05.2016 112,273 59,476

1992 71,530 186,289 06.2016 109,412 58,043

1993 67,320 185,423 07.2016 113,105 55,248

1994 62,998 186,393 08.2016 115,255 57,998

1995 71,944 188,716 09.2016 116,391 59,251

1996 66,255 202,197 10.2016 118,429 59,179

1997 57,395 199,935 11.2016 114,651 56,103

1998 60,736 214,900 12.2016 104,137 52,683

1999 61,014 218,546

2000 64,642 226,724

2001 66.838 219,858 and retweet count, we used the OpenLink Twitter Ontology>
2002 69,365 227,847 (its class Tweet corresponds to an archived document in our
2003 66,833 226,896 model).

2004 63,796 224,252 For extracting entities from the tweets, we used Yahoo
2005 62,822 228,426 FEL (with confidence score -4). For each extracted entity,
2006 61,727 231,223 we stored its name (surface form), its URI and its confidence
2007 28,501 151,119 score. In total, 146,854 distinct entities (including concepts

URL we stored its total number of captures, the date of its
first capture, and the date of its last capture. For assigning
URLs to the versioned web pages, we used links to the col-
lection’s Wayback Machine provided by Archive-It. In that
way one can have direct online access to a specific version
of an archived web page.

The semantic layer contains 1,344,450 same-as proper-
ties, which means that we avoided annotating and storing
identical information for a very large number of ver-
sioned web pages (about 15% of all captures). Moreover,
939,960 distinct entities (including concepts and events)
were extracted from the archived web pages. For each
entity, we stored its name (surface form), its URI, its posi-
tion in the text, and its confidence score. The constructed
semantic layer contains totally more than 10 billion triples
(10,884,509,868).

4.3 A semantic layer for a social media archive

We also created a semantic layer for a collection of tweets.
The collection comprises 1,363,415 tweets posted in 2016 by
469 twitter accounts of USA newspapers. For each tweet we
exploit its text, creation date, favorite count, retweet count,
and the screen name of the account that posted the tweet.
For representing an instance of a tweet, as well as its favorite

and events) were extracted from the collection. Table 2 shows
the number of tweets and distinct entities per month. The con-
structed semantic layer contains totally 19,242,761 triples.

4.4 Querying the semantic layers

By exploiting the expressive power of SPARQL [36] and
its federated features [14,37], we can offer advanced query
capabilities over the semantic layers. Below we first discuss
how a semantic layer can satisfy the motivating questions
described in Sect. 2.1 by also presenting interesting query
examples. We also present other exploitation scenarios for
different application contexts.

Information exploration and integration (Q1-Q2)

A semantic layer allows running sophisticated queries that
can also directly integrate information from external knowl-
edge bases. For example, Listing 2 shows a SPARQL query
that can be answered by the semantic layer of the NYT cor-
pus. The query asks for articles of June 1989 discussing about
New York lawyers born in Brooklyn. By directly access-
ing DBpedia, the query retrieves the entities that satisfy the
query as well as additional information (in our example the
birth date and a description in French of each lawyer). The

25 http://www.openlinksw.com/schemas/twitter.

@ Springer

http://www.openlinksw.com/schemas/twitter

P. Fafalios et al.

query returns 47 articles mentioning five different New York
lawyers born in Brooklyn.

ISELECT ?article ?title ?date ?nylawyer ?bdate ?
2abstr WHERE {

3SERVICE <http://dbpedia.org/spargl> {
4?nylawyer dc:subject dbc:New_York_lawyers ;
sdbo:birthPlace dbr:Brooklyn .

60PTIONAL {

7?nylawyer dbo:birthDate ?bdate ;

sdbo:abstract ?abstr FILTER(lang(?abstr)="fr")}}
9?article dc:date ?date FILTER(?date>="1989-06-01"
10" "xsd:date

11&& ?date<="1989-06-30"""xsd:date)

12?article schema:mentions ?entity .

13?entity oae:hasMatchedURI ?nylawyer .
14?article dc:title ?title

15} ORDER BY ?nylawyer

Listing2 SPARQL query forretrieving articles of June 1989 discussing
about New York lawyers born in Brooklyn

Listing 3 shows a query that can be answered by the
semantic layer of the tweets collection. The query requests
the most popular tweets (having more than 50 retweets)
posted during the summer of 2016, mentioning basketball
players of the NBA team Los Angeles Lakers. The query
returns 14 tweets mentioning seven different players.

ISELECT DISTINCT ?tweet ?count ?date ?entityUri WHERE ({
2SERVICE <http://dbpedia.org/spargl> {

3?entityUri dc:subject dbc:Los_Angeles_Lakers_players }
4?7t a tw:Tweet ;

s5dc:date ?date FILTER(?date>="2016-06-01"""xsd:dateTime &&
6?date<="2016-08-31"""xsd:dateTime)

7?t tw:retweetCount ?count FILTER (?count > 50)

8?2t schema:text ?tweet ; schema:mentions ?entity .
9?entity oae:hasMatchedURI ?entityUri }

Listing3 SPARQL query for retrieving popular tweets of summer 2016
mentioning basketball players of Los Angeles Lakers

We can also combine information coming from different
semantic layers. For example, the query in Listing 4 requests
tweets of summer 2016 mentioning basketball players of Los
Angeles Lakers discussed in articles of the same time period.

ISELECT DISTINCT ?player ?tweet WHERE ({

2SERVICE <http://dbpedia.org/sparqgl> {

3?player dc:subject dbc:Los_Angeles_Lakers_players }
4?article dc:date ?date FILTER(?date>="2016-06-01"
5" "xsd:date

6&& ?date<="2016-08-31"""xsd:date)

7?article schema:mentions ?articleEntity .
g?articleEntity oae:hasMatchedURI ?player .

9?tweet a tw:Tweet ;

10dc:date ?date FILTER(?date>="2016-06-01"""xsd:date
11&& ?date<="2016-08-31"""xsd:date)

12?tweet schema:mentions ?tweetEntity .
13?tweetEntity oae:hasMatchedURI ?player }

Listing 4 SPARQL query for retrieving tweets of summer 2016 men-
tioning players of Los Angeles Lakers discussed in articles of the same
time period

@ Springer

Information inference (Q3)

By querying a semantic layer, we can infer useful knowl-
edge related to the archived documents that is very laborious
to derive otherwise. For example, Listing 5 shows a query
that can be answered by the semantic layer of the Occupy
Movement collection. The query asks for the most discussed
journalists in the web pages of this collection. Notice that
the query counts the archived documents, not the versions. In
that way we avoid counting multiple times exactly the same
pages captured in different time periods. The query returns
Ralph Nader, Chris Hedges, and Dylan Ratigan, as three of
the most discussed journalists.

Likewise, by running a query at the semantic layer of the
NYT corpus requesting the number of articles per year dis-
cussing about Nelson Mandela (Listing 6), we can see that in
1990 the number of articles is much higher compared to the
previous years, meaning that this year was probably impor-
tant for Nelson Mandela (indeed, as in 1990 Nelson Mandela
was released from prison).

Listing 7 shows another example in which the query
requests the most discussed drugs in articles of 1987. The
query returns the following top-5 drugs:

ISELECT ?journ (COUNT (DISTINCT ?page) AS ?num) WHERE {
2SERVICE <http://dbpedia.org/sparqgl> {

3?journ a yago:Journalist110224578 }

4?page a owa:ArchivedDocument ;

sdc:hasVersion ?version .

6?version schema:mentions ?entity .

7?entity oae:hasMatchedURI ?journ .

8} GROUP BY ?journ ORDER BY DESC (?num)

Listing 5 SPARQL query for retrieving the most discussed journalists
in web pages of the Occupy Movement collection

ISELECT ?year (COUNT (DISTINCT ?article) AS ?num) WHERE {
2?article dc:date ?date ;

3schema:mentions ?entity .

4?entity oae:hasMatchedURI dbr:Nelson_ Mandela

5} GROUP BY (year (?date) AS ?year) order by ?year

Listing6 SPARQL query for retrieving the number of articles per year
mentioning Nelson Mandela

Cocaine (778 articles), Heroin (248 articles), Aspirin (63 arti-
cles), Zidovudine (53 articles), Furosemide (53 articles). If
we run the same query for the year 1997, the results are:
Cocaine (462 articles), Heroin (275 articles), Nicotine (125
articles), Fluoxetine (61 articles), Caffeine (58 articles). We
notice that Cocaine and Heroin remain the two most dis-
cussed drugs; however, we also see that Nicotine is highly
discussed in 1997 but not in 1987.

Building and querying semantic layers for web archives (extended version)

I1SELECT ?drug (count (DISTINCT ?article) as
2?numOfArticles) WHERE {

3SERVICE <http://dbpedia.org/sparqgl> {
4?drug a dbo:Drug }

s?article dc:date ?date FILTER (year (?date) =
6?article schema:mentions ?ent .

7?ent oae:hasMatchedURI ?drug .

8} GROUP BY ?drug ORDER BY DESC (?numOfArticles)

"1987")

Listing 7 SPARQL query for retrieving the most discussed drugs in
1987

Robustness and multilinguality (Q4-Q5)

Each entity extracted from the archived documents is
assigned a unique URI (together with a confidence score)
which can be used for retrieving documents and information
related to that entity. This means that all different mentions of
an entity (e.g., name variants or names in different languages)
are assigned the same unique URI. Thereby, we can query
a semantic layer and retrieve information related to one or
more entities without having to worry about the names of the
entities (like in the queries of Listings 2—7). Of course, this
also depends on the entity linking system used for extracting
the entities, specifically on its “time-awareness” and correct
disambiguation (e.g., for understanding that Leningrad cor-
responds to the DBpedia URI http://dbpedia.org/resource/
Saint_Petersburg), as well as on whether it supports the iden-
tification of entities in different languages (e.g., for assigning
the same URI http://dbpedia.org/resource/ Abortion to both
“abortion” and “Schwangerschaftsabbruch”).

Interoperability (Q6)

RDF is a standard model for data interchange on the Web
and has features that facilitate data integration. Describing
metadata and content-based information about web archives
in RDF makes their contents machine understandable and
allows their direct exploitation by other systems and tools.
Moreover, following the LOD principles for publishing a
semantic layer enables other systems to directly access it,
while the advanced query capabilities that it offers allow the
easy identification of an interesting part of a web archive
(related to a time period and some entities) by just writing
and submitting a SPARQL query.

Other exploitation scenarios

Time-aware entity recommendation. Recent works have
shown that entity recommendation is time dependent, while
the co-occurrence of entities in documents of a given time
period is a strong indicator of their relatedness during that
period and thus should be taken into consideration [44,51].
By querying a semantic layer, we can easily find entities of a
specific type, or having some specific characteristics, that co-

occur frequently with a given entity in a specific time period,
thereby enabling the provision of time and context aware
entity recommendations. For example, the query in Listing
8 retrieves the top-5 politicians co-occurring with Barack
Obama in NYT articles of summer 2007. Here, one could
also apply a more sophisticated approach, e.g., by also con-
sidering the inverse document frequency of the co-occurred
entities in the same time period.

ISELECT ?politician (count(distinct ?article) as ?num)
2WHERE {

3SERVICE <http://dbpedia.org/spargl> {

4?politician a dbo:Politician }

s?article dc:date ?date FILTER(?date >= "2007-06-01"
6" "xsd:date &&

7?date <= "2007-08-30"""xsd:date)

g?article schema:mentions ?entity .

9?entity oae:hasMatchedURI dbr:Barack_Obama .
l0?article schema:mentions ?entityPolit.
11?entityPolit oae:hasMatchedURI ?politician

2FILTER (?politician != dbr:Barack_Obama)

13} GROUP BY ?politician ORDER BY DESC (?num) LIMIT 5

Listing 8 SPARQL query for retrieving the top-5 politicians co-
occurring with Barack Obama in NYT articles of summer 2007

Evolution of entity-related features. The work in [15] has
proposed a set of measures that allow studying how entities
are reflected in a social media archive and how entity-related
information evolves over time. Given an entity and a time
period, the proposed measures capture the following entity
aspects: popularity, attitude (predominant sentiment), sen-
timentality (magnitude of sentiment), controversiality, and
connectedness to other entities. Such time-series data can
be easily computed by running SPARQL queries on a cor-
responding semantic layer (considering also that the layer
contains the sentiments of the tweets). For example, the
query in Listing 9 retrieves the monthly popularity of Barack
Obama in tweets of 2016 (using Formula 1 of [15]).

ISELECT ?month xsd:double (?cEnt) /xsd:double(?cAll)
2WHERE {

3{ SELECT (month (?date)
4AS ?cAll) WHERE {
5?tweet dc:date ?date FILTER (year (?date) =
6} GROUP BY month(?date) }

7{ SELECT (month(?date) AS ?month)
8AS ?cEnt) WHERE {

9?tweet dc:date ?date FILTER (year (?date) =
10?tweet schema:mentions ?entity .

11?entity oae:hasMatchedURI dbr:Barack_Obama
12} GROUP BY month (?date) }

13} ORDER BY ?month

AS ?month) (count (?tweet)
2016)

(count (?tweet)

2016)

Listing 9 SPARQL query for retrieving the monthly popularity of
Barack Obama in tweets of 2016

Identification of similar or identical documents. We can find
similar documents by comparing the entities mentioned on
them. The idea is that if two documents mention a big num-
ber of common entities then they are probably about the same
topic. For example, given a NYT article about golf, the query

@ Springer

http://dbpedia.org/resource/Saint_Petersburg
http://dbpedia.org/resource/Saint_Petersburg
http://dbpedia.org/resource/Abortion

P. Fafalios et al.

in Listing 10 retrieves the top-5 documents with the big-
ger number of common entities. By inspecting the returned
results, we notice that all are about golf.

ISELECT ?article2 (count (?entUri2) as ?numOfCommon)
2WHERE {

3nyt:9504E4D71530F932A35755C0A9619C8B63 schema:mentions
4?entityl .

5?entityl oae:hasMatchedURI ?entUril .

6?article2 schema:mentions ?entity2

7FILTER (?article2 != nyt:9504E4D71530F932A35755C0A96
819C8B63)

9?entity2 oae:hasMatchedURI ?entUri2 FILTER (?entUri2 =
10?entUril)

11} GROUP BY ?article2 ORDER BY DESC (?numOfCommon) LIMIT 5

Listing 10 SPARQL query for retrieving similar documents

Likewise, we can find possibly identical documents by
checking if they contain exactly the same number of occur-
rences of the same entities. This can be especially useful for
the case of versioned web archives where two versions of the
same web page may have the same main content but different
checksums because, for example, of different layout.
Advancing information retrieval. Recent works have shown
that the exploitation of entities extracted from search results
can enhance the effectiveness of keyword-based search sys-
tems in different contexts, like in biomedical [12] and
academic [50] search. Consequently, a semantic layer built
on top of a collection of archived documents can also serve
a search system operating over the same collection.

5 Evaluation

Our objective is to show that for a bit more complex infor-
mation needs (e.g., of exploratory nature), keyword-based
search systems return poor results, and thus, there is the need
for more advanced information seeking strategies. This cor-
responds to our first motivating question (Q1). We also study
the quality of the results returned by a semantic layer (for
identifying possible problems and limitations) as well as the
efficiency of query answering.

5.1 Setup

We have defined a set of 20 information needs of exploratory
nature. Each information need requests documents of a spe-
cific time period, related to some entities of interest. We used
the NYT corpus as the underlying archived collection. For
example, “find articles of August 1992 mentioning African-
American film producers” is such an exploratory information
need.

Each of the information needs corresponds to a SPARQL
query and to a free-text query that better describes the infor-
mation need (in our evaluation we consider one interaction

@ Springer

step, i.e., one submitted query). As an example, for the infor-
mation need “find articles of August 1992 discussing about
African-American film producers”, the free-text query that
is used is “African-American film producer” (we manually
specify the date range to each system). Table 3 shows the
full list of information needs and the corresponding free-text
queries.

We evaluated and compared the results returned by the
SPARQL query over the semantic layer with the results
returned by the following two keyword-based search systems
operating over the NYT corpus: (a) Google News (adding at
the end of the query the string “site:nytimes.com” for return-
ing only results from this domain), (b) HistDiv [42], which
uses a different, diversity-oriented approach for searching
news archives. Moreover, in the reported results we did not
consider 23 articles (out of totally 356 articles) returned by
the SPARQL queries because they do not exist in Google
News.

For each information need, we measure:

— the number of hits returned by the SPARQL query

— the number of relevant hits returned by the SPARQL
query

— the number of hits returned by each search system

— the number of relevant hits returned by each search sys-
tem, existing in the set of relevant hits returned by the
SPARQL query

— The number of relevant hits returned by each search sys-
tem, not existing in the set of relevant hits returned by
the SPARQL query.

The SPARQL queries that correspond to the 20 information
needs as well as the full results and the relevance judgements
are publicly available.?

5.2 Results

Table 4 shows the results. We notice that the keyword-based
search systems cannot retrieve many relevant hits, while for
many cases the number of returned results is zero. This
illustrates that their effectiveness is poor for more advanced
information needs like those in our experiments (considering
however that we allow one interaction step). The reason for
this poor performance is the fact that each information need
describes a category of entities which refers to a number of
(possibly unknown) entities, while the corresponding free-
text query does not contain the entity names. For example,
the query “African-American film producer” does not con-
tain the actual names of any of these film producers. Note that
during an exploratory search process, users may be unfamil-
iar with the domain of their goal (e.g., they may not know

26 hitp://13s.de/owa/semanticlayers/SemLayerEval.zip.

http://l3s.de/owa/semanticlayers/SemLayerEval.zip

Building and querying semantic layers for web archives (extended version)

Table 3 List of information needs and corresponding free-text queries used in the evaluation

Information need Free-text query

1 Find articles of June—August 1998 mentioning Best actor academy award winner
actors winners of an academy award for Best
Actor

2 Find articles of July—August 1989 mentioning Los Angeles Lakers player
players of Los Angeles Lakers (NBA team)

3 Find articles of August 1992 mentioning African-American film producer
African-American film producers

4 Find articles of 5-8/1/1990 mentioning drugs Stimulant drugs
which act as stimulants

5 Find articles of 1/7/1992-20/9/1992 mentioning Ferrari formula one drivers
Ferrari Formula One drivers

6 Find articles of 5/7/1989-15/8/1989 mentioning Assassinated Indian politicians
assassinated Indian politicians

7 Find articles of 1-19/06/1990 mentioning American crime thriller films
American crime thriller films

8 Find articles of July—August 1989 mentioning Boeing 747 aircraft accidents
Boeing 747 aircraft accidents

9 Find articles of 1/7/1994-18/9/1994 mentioning Australian cricketers one day internationals
Australian cricketers who played One Day
Internationals

10 Find articles of 4/7/1995 mentioning companies Companies listed on NYSE
listed on the New York Stock Exchange
(NYSE)

11 Find articles of 1/7/1994—-15/8/1994 mentioning Video game consoles
video game consoles

12 Find articles of 1/7/1992—15/9/1992 mentioning Indian Padma Shri recipients
famous Indian personalities who received
Padma Shri Award

13 Find articles of July—September 1993 mentioning Bacterial stds
bacterial sexually transmitted diseases

14 Find articles of July 1989 mentioning operations CIA operations
of the Central Intelligence Agency (CIA)

15 Find articles of 1/8/1998 mentioning Grammy Grammy award winner
Award Winners

16 Find articles of 1989 mentioning Indian meat Indian meat dishes
dishes

17 Find articles of July-September 1994 mentioning Indian mammals
mammalian animals found in India

18 Find articles of 1-10/7/1989 mentioning US fast US fast food chains
food chains

19 Find articles of 1/7/1997-2/8/1997 mentioning NASA civilian astronauts
NASA civilian astronauts

20 Find articles of 1/07/1989-15/8/1989 mentioning Geological hazard

geological hazards

the names of the entities of interest), may be unsure about
the ways to achieve their goal (e.g., not sure about the query
to submit to a search system), or may need to learn about the
topic in order to understand how to achieve their goal (e.g.,
learn facts about some entities of interest) [31]. For achiev-
ing a better performance, the user should probably first find
entities belonging to the corresponding information need and
then submit many queries using the entity names in the query

terms. Thus, multiple interaction and exploration steps may
be needed. However this can be infeasible, for example in
case of a large number of entities of interest.

Nevertheless, the results also show that in a few cases the
search system returns relevant hits that are not returned by
the SPARQL query (e.g., #2 and #20 for Google, #2, #8 and
#16 for HistDiv). In addition, some of the hits returned by the
SPARQL query are not relevant (e.g., 5 results of #2), while

@ Springer

P. Fafalios et al.

Table 4 Comparative evaluation results on effectiveness

Query 1 2 3 4 5 6 7
SPARQL

Num of results 27 34 37 16 11 14 18

Num of relevant results 27 29 35 16 9 14 4
Google News

Num of results 8 1 0 0 0

Num of relevant results 0 0 0 0 0 0 0
returned by SPARQL

Num of relevant results 0 1 0 0 0 0 0
not returned by SPARQL

HistDiv
Num of results 0 3 1 0 0 0 0

Num of relevant results 0 2 0 0 0 0 0
returned by SPARQL

Num of relevant results 0 1 0 0 0 0 0
not returned by SPARQL

11 15 15 12 13 16 14 12 15 13 16 15
1 15 2 8 13 16 13 10 15 13 15 15

especially in three cases (#7, #9, and #1 1), this number is very
large. This is due to disambiguation error of the entity linking
system. For example, for the information need #9 (“Find arti-
cles discussing about Australian Cricketers who played One
Day Internationals”), the entity extraction system wrongly
linked the name “John Dyson” to the former international
cricketer John Dyson, instead of the deputy mayor John
Dyson (at the time of Rudolph Giuliani’s mayoralty) dis-
cussed in the articles. Therefore, the performance of the entity
extraction system as well as the confidence threshold used for
entity disambiguation can affect the quality of the retrieved
results. Applying a low confidence threshold can increase
recall, however, many irrelevant hits may also be returned.
On the contrary, by applying a high confidence threshold,
the returned results are less, but the probability that they are
correct is higher.

Table 5 details all the failure cases. In summary, we have
identified the following problems that can affect the quality
of the results:

e Fulse positive: A SPARQL query may return a result
which is not relevant, due to disambiguation error of the
underlying entity linking system.

e Fualse negative: A SPARQL query may not return a rele-
vant result because: (i) the entity linking system did not
manage to recognize one of the entities of interest, (ii)
the entity linking system did not disambiguate correctly
an extracted entity of interest, (iii) the confidence score
of the extracted entity of interest is under the threshold
used for entity disambiguation.

e Temporal inconsistency: A SPARQL query may return
an irrelevant hit or may not return a relevant hit, because
a property of an entity of interest has changed value.

@ Springer

Table 5 Detailed analysis of SPARQL failure cases

Query SPARQL failure analysis

2 SPARQL returns 5 irrelevant results (disambiguation
errors of the mentions ‘Malcolm C.,” ‘Leonard C.
Green,” ‘Jon Barry,” ‘Bobby Duhon,” ‘Kevin
McKenna’). Google and HistDiv return 1 relevant
result which though is not returned by SPARQL.
The result mentions ‘Mike Johnson’ which is not
linked by the entity linking system

3 SPARQL returns 2 irrelevant results (disambiguation
errors of the mentions ‘Michael Jackson’ and ‘ice
cube’)

5 SPARQL returns 2 irrelevant results (disambiguation
errors of the mentions ‘Tony Brooks’ and ‘Pedro
Rodriquez’)

7 SPARQL returns 14 irrelevant results
(disambiguation errors of the mentions ‘avenging
angel,” ‘Thomas King of New York,’ ‘don’t say a
word,” ‘man apart, ‘usual suspects,” ‘running
scared,’ ‘training day,” ‘ten to midnight,” ‘Black
Dahlia’)

8 HistDiv returns 3 relevant results which are not
returned by SPARQL. The results mention Boeing
747 accidents which though are not linked by the
entity linking system

9 SPARQL returns 10 irrelevant results
(disambiguation errors of the mentions ‘Kevin
Wright, ‘Alan Conolly,” ‘Matthew Elliott,” ‘John
Dyson’)

11 SPARQL returns 13 irrelevant results
(disambiguation errors of the mentions ‘a can,’
‘3DO,” ‘NES, ‘Wii’)

12 This is a special case: 4 results mention the actor Ben
Kingsley. Ben Kingsley is from England; however,
he has been awarded the Padma Shri award

Building and querying semantic layers for web archives (extended version)

Table5 continued

Query SPARQL failure analysis

15 SPARQL returns 1 irrelevant result (disambiguation
error of the mention ‘Betty White’)

16 SPARQL returns 2 irrelevant results (disambiguation
errors of the mention ‘butter, chicken’ linked to the
famous Indian dish Butter Chicken). HistDiv
returns 3 relevant results which though are not
returned by SPARQL. The results contain the
Indian meat dish *Tandoori Murgh’ which is not
linked by the entity linking system

19 SPARQL returns 1 irrelevant results (disambiguation
error of the mention ‘Gregory Johnson’)

20 Google returns 1 relevant result which is not

returned by SPARQL. The result mentions
‘earthquake’ which though is not linked by the
entity linking system

For example, the query of Listing 3 may return a tweet
for a basketball player who was playing in a different
team at the time the tweet was posted. (Although this also
depends on user’s intention, he/she may be interested in
also such players.) Likewise, a query may not return a
hit because the knowledge base (from which we retrieve
the list of players) may not contain information about
the team’s old players. Thus, the contents of the knowl-

Table 6 Execution times of SPARQL queries

edge base, its “freshness” and its completeness, affect the
quality of the retrieved results.

Efficiency of query answering

The execution time of a SPARQL query over a semantic layer
mainly depends on the following factors:

The efficiency of the triplestore hosting the semantic
layer (e.g., in-memory triplestores are more efficient).
The efficiency of the server hosting the triplestore (avail-
able main memory, etc.).

The query itself since some SPARQL operators are costly
(like the operators FILTER and OPTIONAL). Moreover,
if the query contains one or more SERVICE operators
(like the queries of Listings 2-5), then its execution time
is also affected by the efficiency of the remote endpoints
at the time of the request.

Table 6 shows the execution times of the 20 queries used
in our evaluation. The average execution time was about 400

ms,

with minimum 56 ms for query #16 and maximum 2.4 s

for query #15. (We run each query 10 times within 3 days.) All
these queries use the SERVICE operator for querying DBpe-

dia’

s SPARQL endpoint but not any FILTER or OPTIONAL

operator, while the semantic layer was hosted in a Virtuoso

Query R1 (ms) R2 (ms) R3 (ms) R4 (ms) R5 (ms) R6 (ms) R7(ms) R8 (ms) R9 (ms) R10 (ms) Average (ms)
1 40 80 112 78 97 75 74 63 64 63 74.6

2 256 324 406 434 391 408 274 248 251 515 350.7
3 96 585 1540 532 907 123 120 91 89 97 418

4 156 169 295 233 176 216 135 137 130 184 183.1
5 55 59 104 98 86 66 168 49 62 71 81.8

6 53 59 67 78 72 67 51 53 189 72 76.1

7 182 199 455 380 497 223 209 182 260 270 285.7
8 58 46 61 103 200 63 43 48 45 110 77.7

9 75 110 181 122 199 126 82 71 67 103 113.6
10 1809 1887 1991 2936 2900 2858 1822 1711 1743 3816 2347.3
11 65 59 60 88 172 81 58 54 62 156 85.5
12 428 431 462 725 883 793 500 399 420 693 573.4
13 42 77 62 96 54 193 40 32 41 50 68.7
14 79 95 92 115 107 407 69 70 62 98 1194
15 1772 1958 2132 2975 3611 3080 1962 1768 1739 3291 2428.8
16 42 70 74 119 74 45 31 30 33 43 56.1
17 89 95 87 136 117 100 93 79 83 128 100.7
18 182 181 195 258 581 253 235 153 162 229 242.9
19 65 98 71 100 712 81 89 55 51 85 140.7
20 82 81 67 108 104 72 56 57 61 88 77.6
Average (ms) 395.12

@ Springer

P. Fafalios et al.

server installed in a modest personal computer (MacBook
Pro, Intel Core i5, 8 GB main memory) and we run the queries
in Java 1.8 using Apache Jena 3.1.

6 Conclusion

We have introduced a model and a framework for describ-
ing and publishing metadata and semantic information about
web archives. The constructed semantic layers allow: (i)
exploring web archives in a more advanced way based on
entities, events, and concepts extracted from the archived
documents and linked to web resources; (ii) integrating infor-
mation (even at query-execution time) coming from multiple
knowledge bases and semantic layers; (iii) inferring new
knowledge thatis very laborious to derive otherwise; (iv) cop-
ing with common problems when exploring web archives like
temporal reference variants and multilinguality; and (v) mak-
ing the contents of web archives machine understandable,
thereby enabling their direct exploitation by other systems
and tools. The results of a comparative evaluation showed
that semantic layers can answer complex information needs
that keyword-based search systems fail to sufficiently satisfy.
The evaluation also enabled us to identify problems that can
affect the effectiveness of query answering.

We believe that constructing semantic layers is the first
step toward more advanced and meaningful exploration of
web archives [24]. Our vision is to enrich the LOD cloud?’
with semantic layers, i.e., with knowledge bases describing
metadata and semantic information about archived collec-
tions.

Regarding future work and research, user-friendly inter-
faces should be developed on top of semantic layers for
allowing end-users to easily and efficiently explore web
archives. Another interesting direction is to study approaches
for ranking the results returned by SPARQL queries [16].

Acknowledgements The work was partially funded by the Euro-
pean Commission for the ERC Advanced Grant ALEXANDRIA (No.
339233).

References

1. Alam, S., Nelson, M.L., Van de Sompel, H., Balakireva, L.L.,
Shankar, H., Rosenthal, D.S.: Web archive profiling through cdx
summarization. In: International Conference on Theory and Prac-
tice of Digital Libraries, Springer (2015)

2. Alam, S., Nelson, M.L., Van de Sompel, H., Rosenthal, D.S.: Web
archive profiling through fulltext search. In: International Confer-
ence on Theory and Practice of Digital Libraries, Springer (2016)

3. Alexander, K., Hausenblas, M.: Describing linked datasets-on the
design and usage of void, the vocabulary of interlinked datasets. In:

27 http://lod-cloud.net/.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

In Linked Data on the Web Workshop (LDOW 09), in conjunction
with 18th International World Wide Web Conference (WWW 09,
Citeseer) (2009)

. AlSum, A., Weigle, M.C., Nelson, M.L., Van de Sompel, H.:

Profiling web archive coverage for top-level domain and content
language. Int. J. Digit. Libr. 14(3—4), 149-166 (2014)

. Anand, A., Bedathur, S., Berberich, K., Schenkel, R., Tryfonopou-

los, C.: Everlast: a distributed architecture for preserving the web.
In: 9th ACM/IEEE-CS Joint Conference on Digital libraries, ACM
(2009)

. Arenas, M., CuencaGrau, B., Kharlamov, E., Marciuska, S.,

Zheleznyakov, D., Jimenez-Ruiz, E.: SemFacet: semantic faceted
search over YAGO. In: 23rd International Conference on World
Wide Web, ACM (2014)

. Antoniou, G., Van Harmelen, F.: Web ontology language: owl. In:

Handbook on Ontologies, pp. 67-92. Springer, Heidelberg (2004)

. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity

linking for queries. In: Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining, pp. 179-188.
ACM (2015)

. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity

linking in queries. In: Eight ACM International Conference on Web
Search and Data Mining, ACM, New York, NY, USA (2015)
Bornand, N.J., Balakireva, L., Van de Sompel, H.: Routing
memento requests using binary classifiers. In: 16th ACM/IEEE-
CS on Joint Conference on Digital Libraries, ACM (2016)
Brickley, D., Guha, R.V., McBride, B.: Rdf schema 1.1. W3C
Recomm. 25, 2004-2014 (2014)

Fafalios, P., Tzitzikas, Y.: Stochastic re-ranking of biomedical
search results based on extracted entities. J. Assoc. Inf. Sci. Tech-
nol. (JASIST) 68(11), 2572-2586 (2017)

Fafalios, P., Baritakis, M., Tzitzikas, Y.: Exploiting linked data for
open and configurable named entity extraction. Int. J. Artif. Intell.
Tools 24(02), 1540012 (2015)

Fafalios, P., Yannakis, T., Tzitzikas, Y.: Querying the web of data
with sparql-1d. In: International Conference on Theory and Practice
of Digital Libraries, Springer, pp. 175-187 (2016)

Fafalios, P., Iosifidis, V., Stefanidis, K., Ntoutsi, E.: Multi-aspect
entity-centric analysis of big social media archives. In: 21st Inter-
national Conference on Theory and Practice of Digital Libraries
(TPDL’17), Thessaloniki, Greece (2017)

Fafalios, P., Kasturia, V., Nejdl, W.: Towards a ranking model
for semantic layers over digital archives. In: ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL’17 - Posters & Demonstra-
tions)), Toronto, Ontario, Canada (2017)

Fernando, Z.T., Marenzi, 1., Nejdl, W., Kalyani, R.: Archiveweb:
Collaboratively extending and exploring web archive collections.
In: International Conference on Theory and Practice of Digital
Libraries, Springer (2016)

Ferragina, P., Scaiella, U.: Tagme: on-the-fly annotation of short
text fragments (by wikipedia entities). In: 19th ACM international
conference on Information and knowledge management, ACM
(2010)

Ferré, S.: Sparklis: an expressive query builder for SPARQL end-
points with guidance in natural language. Semant. Web 8(3),
405-418 (2017)

Gossen, G., Demidova, E., Risse, T.: Extracting event-centric doc-
ument collections from large-scale web archives. In: International
Conference on Theory and Practice of Digital Libraries (2017)
Heath, T., Bizer, C.: Linked data: evolving the web into a global
data space. Synth. Lectures Semantic Web Theory Technol. 1(1),
1-136 (2011)

. Hoffart, J., Yosef, M.A., Bordino, 1., Fiirstenau, H., Pinkal, M.,

Spaniol, M., Taneva, B., Thater, S., Weikum, G.: Robust disam-
biguation of named entities in text. In: Conference on Empirical
Methods in Natural Language Processing (2011)

http://lod-cloud.net/

Building and querying semantic layers for web archives (extended version)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Holzmann, H., Anand, A.: Tempas: temporal archive search based
on tags. In: International Conference on World Wide Web (2016)
Holzmann, H., Risse, T.: Accessing web archives from different
perspectives with potential synergies. In: 2nd International Con-
ference on Web Archives/Web Archiving Week (RESAW/IIPC)
(2017)

Holzmann, H., Goel, V., Anand, A.: Archivespark: efficient web
archive access, extraction and derivation. In: 16th ACM/IEEE-CS
on Joint Conference on Digital Libraries, ACM (2016)
Holzmann, H., Nejdl, W., Anand, A.: Exploring web archives
through temporal anchor texts. In: Proceedings of the 2017 ACM
on Web Science Conference, ACM, pp 289-298 (2017)

Jackson, A., Lin, J., Milligan, I., Ruest, N.: Desiderata for
exploratory search interfaces to web archives in support of schol-
arly activities. In: 16th ACM/IEEE-CS on Joint Conference on
Digital Libraries, ACM (2016)

Kanhabua, N., Kemkes, P., Nejdl, W., Nguyen, T.N., Reis, F., Tran,
N.K.: How to search the internet archive without indexing it. In:
20th International Conference on Theory and Practice of Digital
Libraries, Springer (2016)

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer,
S., et al.: Dbpedia-a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web 6(2), 167-195 (2015)
Lin, J., Gholami, M., Rao, J.: Infrastructure for supporting explo-
ration and discovery in web archives. In: International Conference
on World Wide Web (2014)

Marchionini, G.: Exploratory search: from finding to understand-
ing. Commun. ACM 49(4), 41-46 (2006)

Matthews, M., Tolchinsky, P., Blanco, R., Atserias, J., Mika, P.,
Zaragoza, H.: Searching through time in the New York times. In:
4th Workshop on Human-Computer Interaction and Information
Retrieval (2010)

Moro, A., Raganato, A., Navigli, R.: Entity linking meets word
sense disambiguation: a unified approach. Trans. Assoc. Comput.
Linguist. 2, 231-244 (2014)

Padia, K., AlNoamany, Y., Weigle, M.C.: Visualizing digital col-
lections at archive-it. In: 12th ACM/IEEE-CS joint conference on
Digital Libraries, pp. 15-18. ACM (2012)

Page, K.R., Bechhofer, S., Fazekas, G., Weigl, D.M., Wilmering,
T.: Realising a layered digital library: exploration and analysis of
the live music archive through linked data. In: Digital Libraries
(JCDL), 2017 ACM/IEEE Joint Conference on, IEEE, pp 1-10
(2017)

PrudHommeaux, E., Seaborne, A., et al.: Sparql query language
for rdf. W3C recommendation 15 (2008)

Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating
queries in SPARQL 1.1: syntax, semantics and evaluation. Web
Semant. Sci. Serv. Agents. World Wide Web 18(1), 1-17 (2013)
Sacco, G.M., Tzitzikas, Y.: Dynamic Taxonomies and Faceted
Search: Theory, Practice, and Experience, vol. 25. Springer, New
York (2009)

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Sanderson, R., Ciccarese, P, Van de Sompel, H.: Designing the
W3C open annotation data model. In: Proceedings of the 5th
Annual ACM Web Science Conference, pp. 366-375. ACM (2013)
Sandhaus, E.: The New Tork Times annotated corpus. Linguist.
Data Consort. Philadelphia 6(12), €26752 (2008)

Singh, J., Nejdl, W., Anand, A.: Expedition: a time-aware
exploratory search system designed for scholars. In: SIGIR con-
ference on Research and Development in Information Retrieval
(2016)

Singh, J., Nejdl, W., Anand, A.: History by diversity: helping his-
torians search news archives. In: ACM Conference on Human
Information Interaction and Retrieval (2016)

Van de Sompel, H., Nelson, M., Sanderson, R.: HTTP Framework
for Time-Based Access to Resource States—Memento. RFC 7089
(2013). https://doi.org/10.17487/RFC7089

Tran, N.K., Tran, T., Niederée, C.: Beyond time: dynamic context-
aware entity recommendation. In: European Semantic Web Con-
ference, Springer (2017)

Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of
RDF/S datasets: a survey. J. Intell. Inf. Syst. 48(2), 329-364 (2017)
Unger, C., Biihmann, L., Lehmann, J., Ngonga Ngomo, A.C., Ger-
ber, D., Cimiano, P.: Template-based question answering over rdf
data. In: 21st international Conference on World Wide Web, ACM
(2012)

Vo, K.D., Tran, T., Nguyen, T.N., Zhu, X., Nejdl, W.: Can we find
documents in web archives without knowing their contents? In:
ACM Conference on Web Science (2016)

Weikum, G., Spaniol, M., Ntarmos, N., Triantafillou, P., Bencziir,
A., Kirkpatrick, S., Rigaux, P., Williamson, M.: Longitudinal
analytics on web archive data: it’s about time! In: 5th Biennial Con-
ference on Innovative Data Systems Research, CIDR 2011 (2011)
Whitelaw, M.: Generous interfaces for digital cultural collections.
Digital Humanit. Q. 9(1), 1 (2015)

Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for aca-
demic search via knowledge graph embedding. In: Proceedings
of the 26th International Conference on World Wide Web, Inter-
national World Wide Web Conferences Steering Committee, pp.
1271-1279 (2017)

Zhang, L., Rettinger, A., Zhang, J.: A probabilistic model for time-
aware entity recommendation. In: International Semantic Web
Conference, Springer (2016)

@ Springer

https://doi.org/10.17487/RFC7089

	Building and querying semantic layers for web archives (extended version)
	Abstract
	1 Introduction
	2 Motivation and related work
	2.1 Motivation
	2.2 Related work
	2.2.1 Profiling web archives
	Difference of our approach
	2.2.2 Exploring web archives
	Online services
	Research works
	Difference of our approach
	2.2.3 Analyzing web archives

	3 Building semantic layers
	3.1 The ``Open Web Archive'' data model
	Extensibility
	Update

	3.2 The construction process
	3.3 The ``ArchiveSpark2Triples'' framework
	Efficiency

	4 Case studies
	4.1 A semantic layer for a news archive
	4.2 A semantic layer for a web archive
	4.3 A semantic layer for a social media archive
	4.4 Querying the semantic layers
	Information exploration and integration (Q1–Q2)
	Information inference (Q3)
	Robustness and multilinguality (Q4–Q5)
	Interoperability (Q6)
	Other exploitation scenarios

	5 Evaluation
	5.1 Setup
	5.2 Results
	Efficiency of query answering

	6 Conclusion
	Acknowledgements
	References

