
Building and Querying Semantic Layers for
Web Archives

Pavlos Fafalios, Helge Holzmann, Vaibhav Kasturia, Wolfgang Nejdl
L3S Research Center, Hannover, Germany
{fafalios, holzmann, kasturia, nejdl}@l3s.de

Abstract—Web archiving is the process of collecting portions
of the Web to ensure that the information is preserved for
future exploitation. However, despite the increasing number of
web archives worldwide, the absence of efficient and meaningful
exploration methods still remains a major hurdle in the way of
turning them into a usable and useful information source. In this
paper, we focus on this problem and propose an RDF/S model
and a distributed framework for building semantic profiles
(“layers”) that describe semantic information about the contents
of web archives. A semantic layer allows describing metadata
information about the archived documents, annotating them with
useful semantic information (like entities, concepts and events),
and publishing all this data on the Web as Linked Data. Such
structured repositories offer advanced query and integration
capabilities and make web archives directly exploitable by other
systems and tools. To demonstrate their query capabilities, we
build and query semantic layers for three different types of web
archives. An experimental evaluation showed that a semantic
layer can answer information needs that existing keyword-based
systems are not able to sufficiently satisfy.

I. INTRODUCTION

Significant parts of our cultural heritage are produced and
consumed on the Web. However, the ephemeral nature of
the Web makes most of its information unavailable and lost
after a short period of time. Aiming to avoid losing important
historical information, a web archive captures portions of
the Web to ensure the information is preserved for future
researchers, historians, and interested parties in general.

Despite the increasing number of web archives worldwide,
the absence of efficient and meaningful exploration methods
still remains a major hurdle in the way of turning web
archives into a usable and useful source of information.
The main functionalities offered by existing systems are to
find older versions of a specific web page, to search on
specific collections, or to search using keywords and filter
the retrieved results by selecting some basic metadata values.
However, for a bit more complex information needs, which is
usually the case when exploring web archives, keyword-based
search leads to ineffective interactions and poor results [1].
This is true especially for exploratory search needs where
searchers are often unfamiliar with the domain of their goals,
unsure about the ways to achieve their goals, or need to
learn about the topic in order to understand how to achieve
their goals [2]. Thus, for exploring web archives, there is the
need to go beyond keyword-based search and support more
advanced information seeking strategies [1], [3].

To cope with this problem, we propose building semantic
profiles (“layers”) that describe semantic information about
the contents of archived documents. Specifically, we base
upon Semantic Web technologies and propose an RDF/S

[4] data model that allows: a) describing useful metadata
information about each archived document, b) annotating each
document with entities, concepts and events extracted from
its textual contents, c) enriching the extracted entities1 with
more semantic information (like properties and related entities
coming from other knowledge bases), and d) publishing all this
data on the Web in the standard RDF format, thereby making
all this information directly accessible and exploitable by other
systems and tools. Then, we can use that model for creating
and maintaining a semantic repository of structured data about
a web archive. Note that the actual contents of the web archive
are not stored in the repository. The proposed approach only
stores metadata information that allows identifying interesting
documents and information based on several aspects (time, en-
tity, type or property of entities, etc.). Therefore, such a repos-
itory acts as a semantic layer over the archived documents.

By exploiting the expressive power of SPARQL [5] and its
federated features [6], we can run advanced queries over a
semantic layer. For example, in case we have constructed a
semantic layer for a news archive, we can run queries like:

• find articles of 1995 discussing about New York lawyers
• find medicine-related articles published during 1995
• find out the most discussed politician during 1995
• find out politicians discussed in articles of 1990 together

with Nelson Mandela
Note that for all these queries we can directly (at query-
execution time) integrate information coming from online
knowledge bases like DBpedia [7]. For instance, regarding the
first query, for each lawyer we can directly access DBpedia
and retrieve his/her birth date, a photo and a description in
a specific language. Thus, semantic layers enable connecting
web archives with existing knowledge bases.

In a nutshell, in this paper we make the following
contributions:

• We introduce a simple but flexible RDF/S data model,
called Open Web Archive, which allows describing and
publishing metadata and semantic information about the
contents of a web archive.

• We detail the process of constructing semantic layers and
we present an open source and distributed framework,
called ArchiveSpark2Triples, that facilitates their efficient
construction.

• We present (and make publicly available) three semantic
layers for three different types of web archives: one for

1For simplicity, when we say entity we refer to entity, concept (e.g.,
Democracy) or event.

a versioned web archive, one for a non-versioned news
archive, and one for a social media archive.

• We present the results of a comparative evaluation using
a set of 20 information needs of exploratory nature
(providing also their relevance judgements). The results
showed that a semantic layer can satisfy information
needs that existing keyword-based systems are not able to
sufficiently satisfy. They also enabled us to identify prob-
lems that can affect the effectiveness of query answering.

The rest of this paper is organized as follows: Section II
motivates our work and presents related literature. Section III
introduces the Open Web Archive data model and describes
the process and a framework for constructing semantic layers.
Section IV presents three semantic layers for three different
types of web archives, as well as their query capabilities.
Section V presents evaluation results. Finally, Section VI con-
cludes the paper and discusses directions for future research.

II. MOTIVATION AND RELATED WORK

In this section, we first motivate our work by discussing
information needs that our approach intends to satisfy for
enabling more sophisticated search and exploration of web
archives. Then we review related works by discussing also
the difference of our approach.

A. Motivating questions
Working with large web archives in the context of

the Alexandria project2, we have identified the following
information needs that an advanced exploration system for
web archives should satisfy:
Q1 Information Exploration. How to explore documents

about entities from the past in a more advanced and
“exploratory” way, e.g., even if we do not know the entity
names related to our information need? For example, how
can we find articles of a specific time period discussing
about a specific category of entities (e.g., philanthropists)
or about entities sharing some characteristics (e.g., born
in Germany before 1960)?

Q2 Information Integration. How to explore web archives
by also integrating information from existing knowledge
bases? For example, how can we find articles discussing
about some entities and for each entity to also retrieve and
show some characteristics (e.g., an image or a description
in a specific language)? Cross-domain knowledge bases
like DBpedia contain such properties for almost every
popular entity. Moreover, how to directly integrate infor-
mation coming from multiple web archives? For example,
how can we combine information from a news archive
and a social media archive?

Q3 Information Inference. How to infer knowledge by ex-
ploiting the contents of a web archive? For example, can
we identify important time periods related to one or more
entities? Vice-versa, can we find out the most popular
entities of a specific type in a specific time period (e.g.,
most discussed politicians in articles of 2000)? Or how
can we understand the topic of a web page (e.g., find
news articles related to medicine)?

2ERC Advance Grant, Nr. 339233, http://alexandria-project.eu/.

Q4 Robustness (in information change). How to explore a
web archive by automatically taking into account the
change of entities over time? For example, the company
Accenture was formerly known as Andersen Consult-
ing, or the city Saint Petersburg was previously named
Leningrad. Such temporal reference variants are common
in the case of high impact events, new technologies, role
changes, etc. How can we find documents from the past
about such entities without having to worry about their
correct reference?

Q5 Multilinguality. How to explore documents about entities
from the past independently of the document language
(and thus of the language of the entity name)? For
instance, abortion is Avortement in French and Schwan-
gerschaftsabbruch in German. How can we find docu-
ments about entities without having to worry about the
document and entity language?

Q6 Interoperability. How to facilitate exploitation of web
archives by other systems? How to expose information
about web archives in a standard and machine understand-
able format, that will always be available on the Web, and
that will allow for easy information integration? How to
avoid downloading and parsing the entire web archive
for identifying an interesting part of it related both to a
time period and to some entities. For example, how can
we gather a corpus of articles of 2004 discussing about
Greek politicians?

B. Related Work
1) Profiling Web Archives: A semantic layer can be

considered a way to profile the contents of a web archive.
AlSum et al. [8] exploit the age of the archived copies and their
supported domains, to avoid sending queries to archives that
likely do not hold the archived page. Sawood et al. [9] examine
the size and precision trade-offs in different policies for
producing profiles of web archives (ranging between using full
URIs and only top-level domains). Bornand et al. [10] explore
the use of binary, archive-specific classifiers to determine
whether or not to query an archive for a given URI. Alam et al.
[11] introduce a random searcher model to randomly explore
the holdings of an archive (by exploiting co-occurring terms).

The aim of all these works is to improve the effectiveness of
query routing strategies in distributed archive search. However,
such profiling approaches do not allow expressing semantic
information about the contents of the archived documents and
thus cannot be exploited for satisfying more sophisticated
information needs like those discussed in Section II-A.

2) Exploring Web Archives: The Wayback Machine is a
digital archive of the Web created by the Internet Archive
(https://archive.org/). It currently contains more than 450
billion web pages, making it the biggest web archive in the
world. With the Wayback Machine, the user can retrieve
and access older versions of a web page. The results are
displayed in a calendar view showing also the number of
times the URL was crawled. Wayback Machine also offers
faceted exploration of archived collections, thus allowing the
user to filter the displayed results by media type, subject,
collection, creator, and language. Recently, it also started
offering keyword-based searching.

The Portuguese Web Archive (PWA) (http://archive.pt)
is a research infrastructure that enables search and access
to files archived from the Web since 1996. PWA provides
comprehensive crawls of the Portuguese Web and supports
both keyword and URL based searching.

Memento’s Time Travel service (http://mementoweb.org)
makes it easier for users to browse the archived version of
a web page by redirecting them to the archive hosting the
page. The user provides the URL of the web page and a date
of interest and Time Travel checks various web archives for
finding an older version of the web page closest to the time
indicated by the user.

Archive-It (https://archive-it.org) is a web archiving service
from the Internet Archive that helps harvesting, building and
preserving collections of digital content. It currently supports
keyword-based searching while the user can also filter the
displayed results based on several metadata values like creator,
subject, and language. Padia et al. [12] present an alternative
interface for exploring an Archive-It collection consisting of
multiple visualizations (image plot with histogram, wordle,
bubble chart and timeline).

Regarding research works, Tempas [13] is a keyword-based
search system that exploits a social bookmarking service for
temporally searching a web archive by indexing tags and
time. It allows temporal selections for search terms, ranks
documents based on their popularity and also provides query
recommendations. Kanhabua et al. [14] propose a search
system that uses Bing for searching the current Web and
retrieving a ranked list of results. The results are then linked
to the WayBack Machine thereby allowing keyword search on
the Internet Archive without processing and indexing its raw
contents. Vo et al. [15] study the usefulness of non-content
evidences for searching web archives, where the evidences
are mined only from metadata of the web pages, their links
and the URLs. ArchiveWeb [16] is a search system that
supports collaborative search of archived collections. It allows
searching across multiple collections in conjunction with
the live web, grouping of resources, and enrichment using
comments and tags. Jackson et al. [17] present two prototype
search interfaces for web archives. The first provides facets
to filter the displayed results by several metadata values (like
content type and year of crawl), while the other is a trend
visualization inspired by Google’s Ngram Viewer. Finally,
Singh et al. [18] introduce the notion of Historical Query
Intents and model it as a search result diversification task
which intends to present the most relevant results (for free
text queries) from a topic-temporal space. For retrieving and
ranking historical documents (e.g., news articles), the authors
propose a novel retrieval algorithm, called HistDiv, which
jointly considers the aspect and time dimensions.

Although existing systems offer user-friendly interfaces,
they cannot satisfy more complex (but common) information
needs like those described in Section II-A. By basing upon
semantic technologies, a semantic layer allows to semantically
describe the contents of a web archive and to directly
“connect” them with existing information available on online
knowledge bases (like DBpedia). In that way, we can not only
explore archived documents in a more advanced way, but
also integrate information, infer new knowledge and quickly

identify interesting parts of a web archive for further analysis.
The main drawback of our approach is its user-friendliness

since, currently, for querying a semantic layer one has to
write structured (SPARQL) queries. However, user-friendly
interfaces can be developed on top of semantic layers that
will allow end-users to easily explore them. Moreover, we
can directly exploit systems like Sparklis [19] that allow
to explore the contents of semantic repositories through
a Faceted Search-like interface [20], [21]. There are also
approaches that translate free-text queries to SPARQL (like
[22]). Providing such user-friendly interfaces on top of
semantic layers is out of the scope of this paper but an
important direction for future research.

3) Analyzing Web Archives: Lin et. al. [23] propose
a platform for analyzing web archives, called Warcbase,
which is built on Apache HBase, a distributed data store.
Storing the data using HBase allows the use of tools in the
Hadoop ecosystem for efficient analytics and data processing.
Warcbase also provides browsing capabilities similar to the
Wayback Machine allowing users to access historical versions
of captured web pages.

ArchiveSpark [24] is a programming framework for
efficient and distributed web archive processing. It is based
on the Apache Spark cluster computing framework [25]
and makes use of standardized data formats for analyzing
web archives. ArchiveSpark2Triples is an extension of
ArchiveSpark for efficiently creating semantic layers for web
archives (more in Section III-C).

III. BUILDING SEMANTIC LAYERS

A. The “Open Web Archive” Data Model
We first introduce an RDF/S data model for describing

metadata and semantic information about the documents of a
web archive. Figure 1 depicts the proposed model, which we
call Open Web Archive data model.3 We have defined 2 new
classes and 3 new properties, while we exploit elements from
many other data models. The class owa:ArchivedDo-
cument represents a document that has been archived. An
archived document may be linked or may not be linked with
some versions, i.e., instances of owa:VersionedDocu-
ment. For example, an archived article from the New York
Times corpus [26] does not contain versions. On the contrary,
Internet Archive contains versions for billions of web sites. For
the case of versioned web archives, and with correspondence
to the Memento Framework (RFC 7089) [27], an archived
document corresponds to an Original Resource and a
versioned document to a Memento. An archived document
containing versions can be also associated with some metadata
information like the date of its first capture (using the property
owa:firstCapture), the date of its last capture (using the
property owa:lastCapture) as well as its total number
of captures (using the property owa:numOfCaptures).

An archived or versioned document can be associated with
three main kinds of elements: i) with metadata information
like date of publication/capture, title of document, and format
(mime type), ii) with other archived or not documents (i.e.,
links to other web pages), and iii) with a set of annotations.

3The specification is available at: http://l3s.de/owa/

For describing some of the metadata we exploit terms of
the Dublin Core Metadata Initiative4. For describing an
annotation, we exploit the Open Annotation Data Model [28]
and the Open Named Entity Extraction (NEE) Model [29].
The Open Annotation Data Model specifies an RDF-based
framework for creating associations (annotations) between
related resources, while the Open NEE Model is an extension
that allows describing the result of an entity extraction process.
An annotation has a target, which in our case is an archived or
versioned document, and a body which is an entity mentioned
in the document. We can also directly relate an archived or
versioned document with an entity by exploiting the property
“mentions” of schema.org5. This can highly reduce the number
of derived triples. An entity can be associated with information
like its name, a confidence score, its position in the document,
and a resource (URI). The URI enables to retrieve additional
information from the Linked Open Data (LOD) cloud [30]
(like properties and relations with other entities).

Figure 2 depicts an example of an archived non-versioned
article. We can see some of its metadata values (date, format,
title), its references to other web pages, and its annotations.
We notice that the entity name “Federer” was identified in that
document. We can also see that this entity has been linked
with the DBpedia resource corresponding to the tennis player
Roger Federer. By accessing DBpedia, we can now retrieve
more information about this entity like its birth date, an image,
a description in a specific language, etc. Such links to DBpedia
can also take the temporal aspect into account. For example,
we can provide entity URIs that lead to DBpedia entity de-
scriptions as they were at the time the web page was captured
(e.g., by exploiting DBpedia archives provided by Memento6).

Figure 3 depicts an example of an archived web page
containing versions. Now, each version has its own metadata,
annotations and references to other web pages. We notice that
the event name “Euro 2008” was identified in the first version
of the archived document and was linked to the DBpedia
resource corresponding to the soccer tournament UEFA Euro
2008. The archived document is also associated with metadata
information related to its versions. Specifically we can see the
date of its first capture, the date of its last capture and its total
number of captures. In addition, by exploiting the same-as
property of OWL Web ontology language [31], we can define
that a specific version of a URL is the same as another
version (e.g., versions 2 and 3 in our example). Thereby,
we can avoid storing exactly the same data for two identical
versions (redundancy is a common problem in web archives).
Extensibility and Update. The proposed model is highly
extensible. For instance, we can exploit the VoID Vocabulary
[32] and express dataset-related information like statistics
(number of triples, number of entities, etc.), creation or last
modification date, the subject of the dataset, and collection
from which the dataset was derived. Likewise, one may
exploit the PROV data model [33] and store provenance-
related information (e.g., which tool was used for crawling
the documents or for annotating them, what organizations or

4http://dublincore.org/
5http://schema.org/mentions
6http://mementoweb.org/depot/native/dbpedia/

people were involved in the crawling or annotation process,
etc.). In addition, since the contents of the archived documents
never change, we can easily update a semantic layer by just
adding triples in the RDF repository, e.g., for describing more
metadata about the archived documents or for including new
versions. In the latter case only, we should also update the
date of last capture and the total number of captures of the
corresponding archived document.

B. The Construction Process

For constructing a semantic layer we follow the following
process:
- Read/Extraction of main content and metadata. We first
extract the main content (full text) from each archived
document (for annotating it with entities) and we also read
its metadata. This, of course, depends on the format used for
storing the archive. For example, WARC (ISO 28500:2009)
is the standard format for storing web crawls, CDX is widely
used for describing metadata of web documents, while NITF
(News Industry Text Format) is a standard XML-based format
for storing and sharing news articles. For extracting the main
content from HTML web pages, we should also remove
the surplus around the main textual content of a web page
(boilerplate, templates, etc.). We can also extract any other
information related to an archived document that we may
want to semantically describe, like the title of the web page
or links to other web pages.
- Entity extraction and linking. We apply entity extraction
and linking in the full text of each archived document for
detecting entities, events and concepts mentioned in the
document and associating them with web resources (like
DBpedia/Wikipedia URIs). TagMe [34], AIDA [35] and
BabelFy [36] are well-known entity extraction and linking
tools with satisfactory performance in entity disambiguation.
- Schema-based generation of RDF triples. Now, we exploit
the Open Web Archive data model, as well as any other needed
vocabulary/ontology, for generating the RDF triples that
describe all the desired data related to the archived documents
(metadata, entities, etc.). For representing the extracted entities
(instances of oa:Annotation, oae:Entity, dc:Event,
and dc:Concept), we can use blank nodes [37] (since such
information does not need to be assigned a unique URI). We
can use blank nodes for also naming the archived or versioned
documents (instances of owa:ArchivedDocument or
owa:VersionedDocument) in case no URLs are given
by the archive provider and no other URLs can be used (e.g.,
links to the Wayback Machine). Moreover, for the case of
versioned documents, if a specific version of a document is
the same as an older version of the same document (e.g., in
case they have the same checksum), we can add a same-as
link starting from the newer document and pointing to the
older one (thereby avoiding storing identical information).
- Entity enrichment (optionally). We can enrich the extracted
entities with more information coming from other knowledge
bases (like properties, characteristics and relations with other
entities). The LOD cloud contains hundreds of knowledge
bases covering many domains. In that way the semantic layer
can directly offer more data about the extracted entities, allow-

skos:Concept

owa:VersionedDocument

owa:ArchivedDocument

owa:ArchivedDocument
owa:VersionedDocument

dc:date

dc:title

owa:firstCapture

owa:numOfCaptures

owa:lastCapture

rdfs:Literal

rdfs:Literal

oae:Entity

rdfs:Literal

rdfs:Literal

rdfs:Literal

rdfs:Resource

oae:position

oae:confidence

oae:score

oae:detectedAs

oae:hasMatchedURI

rdfs:Literal

rdfs:Literal

rdfs:Literal

rdfs:Literal

dc:hasVersion

dc:Event

rdfs:Resource
dc:references

*

*

rdfs:Literal
dc:format

owa: http://l3s.de/owa/

oa: http://www.w3.org/ns/oa#

oae: http://www.ics.forth.gr/isl/oae/core#

dc: http://purl.org/dc/terms/

skos: http://www.w3.org/2004/02/skos/core#

schema: http://schema.org/

rdfs: http://www.w3.org/2000/01/rdf-schema#

oa:Annotation

oa:hasBody

oa:hasTarget

*

oa:hasTarget

dc:format

dc:title

dc:date

*

schema:mentions *

Fig. 1: The Open Web Archive data model.

http://www.nytimes.com/...

06.01.2012 06:40
dc:date

“An example Page”
dc:title

rdf:type

owa:ArchivedDocument

rdf:type

http://...

dc:references
http://...

“text/html”
dc:format

_:e1

512

oae:position

0.9oae:confidence

“Federer”
oae:detectedAs

dbr:Roger_Federer

oae:hasMatchedURI

oae:Entity

rdf:type

dbo:TennisPlayer

schema:mentions

owa: http://l3s.de/owa/
dc: http://purl.org/dc/terms/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
schema: http://schema.org/
oae: http://www.ics.forth.gr/isl/oae/core#

http://...
dc:references

dc:references

dc:references

_:e2

rdf:type

schema:mentions

dc:Event

Fig. 2: Describing an archived article (non-versioned) using the Open Web Archive data model.

http://www.example.com/

:v1

06.01.2012 06:40
dc:date

http://archive.org/1/...

“An example Page”
dc:title

owa:firstCapture

owa:numOfCaptures

owa:lastCapture

06.01.2008 06:40

22.05.2014 18:01

17

dc:Event

dc:hasVersion

owa:VersionedDocument

rdf:type

owa:ArchivedDocument

rdf:type

http://...
dc:references

http://...

http://archive.org/2/...

http://archive.org/3/...

rdf:type

rdf:type

http://...
“text/html”

dc:format

owl:sameAs

_:e1

728

oae:position

0.85
oae:confidence

“Euro 2008”
oae:detectedAs

dbr:UEFA_Euro_2008

oae:hasMatchedURI

rdf:type

rdf:type

dbo:SoccerTournament

dc:hasVersion

dc:hasVersion

owa: http://l3s.de/owa/
dc: http://purl.org/dc/terms/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
schema: http://schema.org/
oae: http://www.ics.forth.gr/isl/oae/core#
owl:http://www.w3.org/2002/07/owl#

…

_:e2

schema:mentions

schema:mentions

rdf:type
oae:Entity

Fig. 3: Describing an archived web page (versioned) using the Open Web Archive data model.

ing for more sophisticated query capabilities and faster query
answering, without requiring to access external knowledge
bases. This step can be also performed after the construction of
the semantic layer, at any time, since we just have to add triples
describing information about the entities in the repository.
- Storage. The derived RDF triples are stored in a triplestore
(e.g., OpenLink Virtuoso7). Now, we can access the triplestore
and query the semantic layer through SPARQL.
- Publication (optionally). We can make the triplestore
publicly available through a SPARQL endpoint and/or as
Linked Data. This will allow other applications to directly
access and query the semantic layer.

C. The “ArchiveSpark2Triples” Framework

ArchiveSpark [24] is a programming framework for
efficiently analyzing web archives stored in the standard
WARC/ CDX format. The core of ArchiveSpark is its unified
data model which stores records in an hierarchical way,
starting with the most essential metadata of a webpage like its
URL, timestamp, etc. Based on this metadata, ArchiveSpark
can run basic operations such as filtering, grouping and
sorting very efficiently. In a step-wise approach the records
can be enriched with more information by applying external
modules, called enrich functions. An enrich function can call
any third-party tool to extract or generate new information
from the contents of a web page. These functions can be
fully customized and shared among researchers and tasks.

ArchiveSpark2Triples8 is an extension of ArchiveSpark that
automates the construction of a semantic layer. It reads a web
archive and outputs information about its resources as well as
derived information in the Notation3 (N3) RDF format based
on the Open Web Archive data model. Internally, ArchiveS-
park2Triples defines three types of documents: archived doc-
ument (instance of owa:ArchivedDocument), versioned
document (instance of owa:VersionedDocument), and
same-as versioned document (instance of owa:Versioned-
Document which constitutes a revisit-record, i.e., duplicate
of a previous capture). In more detail:

• An archived document represents all versions of the
same web page, i.e., all records with the same URL. Its
triples reflect the web page as one unit, including the
number of captures in the web archive, the timestamps
of the first and last capture as well as pointers to the
corresponding versioned documents.

• A versioned document represents each capture of a web
page, i.e., every record of a web page in the archive.
The assignment of URLs to the versioned documents
is customizable and thus can be defined by the user.
By default, the triples of such a document only include
the date of the capture and its mime type (e.g., text,
image, etc.). However, the framework supports to extend
this easily by accessing and transforming into triples
any property of ArchiveSpark’s data model. If this step
involves enrich functions, the required content of the
web page is seamlessly integrated by ArchiveSpark’s
enrichment mechanisms. In our case, we can use enrich

7https://virtuoso.openlinksw.com/
8https://github.com/helgeho/ArchiveSpark2Triples

functions to extract the title of a page, its links to other
pages, and its entities. The extraction of entities requires
an additional module which uses the entity extraction
and linking system Yahoo FEL [38]. The corresponding
enrich function is available under FEL4ArchiveSpark9.

• A same-as versioned document represents an already
archived web page whose content has not been changed.
In this case, a same-as property pointing to the previous
record is only created. The way in which duplicates
are identified is not part of the framework and can be
defined as part of the generation workflow.

Finally, defining the vocabularies to use for producing the
triples is part of the generation workflow and thus can be
customized by the user. A Jupyter Notebook with an example
of a workflow is publicly available10.
Efficiency. ArchiveSpark2Triples gains its efficiency from the
efficiency of ArchiveSpark, which is mainly a result of the
two-way approach that is used for data loading and access
[24]. An archived collection to be used with ArchiveSpark
always consists of two parts, the WARC files containing the
data records with headers and payloads, and the CDX files
containing only basic metadata such as URLs, timestamps
and datatype (which are considerably smaller in size). Hence,
operations that rely exclusively on information contained in
the metadata can be performed very efficiently, e.g., filtering
out items of a certain type. Eventually, if operations need
to be performed on the actual contents, only the required
records are accessed using location pointers in the CDX
files. ArchiveSpark2Triples benefits from this approach, since
records of a datatype other than text/html, such as images and
videos, can be filtered out very fast. In addition, all properties
of the archived documents and the majority of properties of
the versioned documents can be generated purely on metadata
and thus, very efficiently. In fact, the payload is accessed only
for applying enrich functions, e.g., for extracting the title of a
web page, its entities, etc. However, these are only part of the
same-as versioned documents that do not constitute duplicates.

The most expensive task in our pipeline is the entity
extraction process, performed by FEL4ArchiveSpark using
Yahoo FEL [38] (a lightweight and very efficient entity
extraction and linking system). To avoid extraordinarily long
runtimes, FEL4ArchiveSpark supports to define a timeout (e.g.,
set to 10 seconds per record in our experiments). Additionally,
we consider only web pages with a compressed size of less
than 100 KB, as larger file sizes are unlikely to constitute a
web page and may indicate a malformed record. Although the
described steps are considered quite efficient, the actual time
for the entire workflow depends on the dataset size, the nature
of the data as well as the used computing infrastructure.
Indicatively, the Hadoop cluster used in our experiments for
producing a semantic layer for a web archive of about 9
millions web pages consisted of 25 compute nodes with a
total of 268 CPU cores and 2,688 GB RAM (more about this
web archive in Section IV-A). While the available resources
strongly depend on the load of the cluster and vary, we worked

9https://github.com/helgeho/FEL4ArchiveSpark
10https://github.com/helgeho/ArchiveSpark2Triples/blob/master/notebooks/

Triples.ipynb

with 110 executors in parallel most of the time, which resulted
in a runtime of 24 hours for processing the entire collection
of 474.6 GB of compressed WARC and CDX files.

IV. CASE STUDIES

In this section, we present three semantic layers for three
different types of web archives and we showcase their query
capabilities. The semantic layers are publicly available for
experimentation and further research11.

A. A Semantic Layer for a Web Archive

Using ArchiveSpark2Triples, we created a semantic layer
for the Occupy Movement 2011/2012 collection12, which has
been generously provided to us by Archive-It. The collection
contains 9,094,573 captures of 3,036,326 web pages related to
protests and demonstrations around the world calling for social
and economic equality. For each version, we stored its capture
date, its title, its mime type and its extracted entities (using a
confidence score of -4), while for each distinct URL we stored
its total number of captures, the date of its first capture, and the
date of its last capture. For assigning URLs to the versioned
web pages, we used links to the collection’s Wayback Machine
provided by Archive-It. In that way one can have direct online
access to a specific version of an archived web page.

The semantic layer contains 1,344,450 same-as properties,
which means that we avoided annotating and storing identical
information for a very large number of versioned web pages.
Moreover, 939,960 distinct entities (including concepts and
events) were extracted from the archived web pages. For
each entity, we stored its name (surface form), its URI, its
position in the text, and its confidence score. The constructed
semantic layer contains totally more than 10 billion triples
(10,884,509,868).

B. A Semantic Layer for a News Archive

We created a semantic layer for the New York Times (NYT)
Annotated Corpus [26] (a non-versioned news archive). The
corpus contains over 1.8 million articles published by the
NYT between 1987 and 2007. We filtered out articles like
memorial notices, corrections, letters, captions, etc. which
actually are not articles. This reduced their number to
1,456,896. For each article in the corpus, a large amount of
metadata is provided. In this case study, we exploited only
the article’s URL, title and publication date. Of course, one
can exploit any other of the provided metadata (like author,
taxonomic classifiers, etc.) and extend the semantic layer with
more triples describing these metadata fields.

We used TagMe [34] for extracting entities from each article
using a confidence score of 0.2. For each extracted entity,
we stored its name (surface form), its URI and its confidence
score. In total, 856,283 distinct entities (including concepts and
events) were extracted from the NYT articles. The constructed
semantic layer contains totally 195,958,390 triples.

11http://l3s.de/owa/semanticlayers/
12https://archive-it.org/collections/2950

C. A Semantic Layer for a Social Media Archive
We also created a semantic layer for a collection of tweets.

The collection comprises 1,363,487 tweets posted in 2016 by
469 twitter accounts of USA newspapers. For each tweet we
exploit its text, creation date, favorite count, retweet count,
and the screen name of the account that posted the tweet.
For representing an instance of a tweet, as well as its favorite
and retweet count, we used the OpenLink Twitter Ontology13

(its class Tweet corresponds to an archived document in our
model).

For extracting entities from the tweets, we used Yahoo FEL
(with confidence score -4). For each extracted entity, we stored
its name (surface form), its URI and its confidence score. In
total, 146,854 distinct entities (including concepts and events)
were extracted from the collection. The constructed semantic
layer contains totally 19,242,761 triples.

D. Query capabilities
By exploiting the expressive power of SPARQL and its

federated features, we can offer advanced query capabilities
over the semantic layers. Below we discuss how a semantic
layer can satisfy the motivating questions described in Section
II-A by also presenting interesting query examples.
Information Exploration (Q1) and Integration (Q2). A
semantic layer allows running sophisticated queries that can
also directly integrate information from external knowledge
bases. For example, Figure 4 shows a SPARQL query that
can be answered by the semantic layer of the NYT corpus.
The query asks for articles of June 1989 discussing about
New York lawyers born in Brooklyn. By directly accessing
DBpedia, the query retrieves the entities that satisfy the query
as well as additional information (in our example the birth
date and a description in French of each lawyer). The query
returns 47 articles mentioning 5 different New York lawyers
born in Brooklyn.

1SELECT ?article ?title ?date ?nylawyer ?bdate ?abstr WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?nylawyer dc:subject dbc:New_York_lawyers ;
4 dbo:birthPlace dbr:Brooklyn .
5 OPTIONAL {
6 ?nylawyer dbo:birthDate ?bdate ;
7 dbo:abstract ?abstr FILTER(lang(?abstr)="fr")}}
8 ?article dc:date ?date FILTER(?date>="1989-06-01"ˆˆxsd:date
9 && ?date<="1989-06-30"ˆˆxsd:date)

10 ?article schema:mentions ?entity .
11 ?entity oae:hasMatchedURI ?nylawyer .
12 ?article dc:title ?title } ORDER BY ?nylawyer

Fig. 4: SPARQL query for retrieving articles of June 1989
discussing about New York lawyers born in Brooklyn.

Figure 5 shows a query that can be answered by the
semantic layer of the tweets collection. The query requests
the most popular tweets (having more than 50 retweets)
posted during the summer of 2016, mentioning basketball
players of the NBA team Los Angeles Lakers. The query
returns 14 tweets mentioning 7 different players.

We can also combine information coming from different
semantic layers. As an example, one could run a query
requesting tweets of 2016 mentioning basketball players
discussed in articles of the same time period.

13http://www.openlinksw.com/schemas/twitter

1SELECT DISTINCT ?tweet ?count ?date ?entityUri WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?entityUri dc:subject dbc:Los_Angeles_Lakers_players }
4 ?t a tw:Tweet ;
5 dc:date ?date FILTER(?date>="2016-06-01"ˆˆxsd:dateTime &&
6 ?date<="2016-08-31"ˆˆxsd:dateTime)
7 ?t tw:retweetCount ?count FILTER (?count > 50) .
8 ?t schema:text ?tweet ; schema:mentions ?entity .
9 ?entity oae:hasMatchedURI ?entityUri }

Fig. 5: SPARQL query for retrieving popular tweets about
basketball players of Los Angeles Lakers.

Information Inference (Q3). By querying a semantic layer
we can infer useful knowledge related to the archived
documents that is very laborious to derive otherwise. For
example, Figure 6 shows a query that can be answered by
the semantic layer of the Occupy Movement collection. The
query asks for the most discussed journalists in the web pages
of this collection. Notice that the query counts the archived
documents, not the versions. In that way we avoid counting
multiple times exactly the same pages captured in different
time periods. The query returns Ralph Nader, Chris Hedges
and Dylan Ratigan, as three of the most discussed journalists.

1SELECT ?journ (COUNT(DISTINCT ?page) AS ?num) WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?journ a yago:Journalist110224578 }
4 ?page a owa:ArchivedDocument ; dc:hasVersion ?version .
5 ?version schema:mentions ?entity .
6 ?entity oae:hasMatchedURI ?journ .
7} GROUP BY ?journ ORDER BY DESC(?num)

Fig. 6: SPARQL query for retrieving the most discussed
journalists in web pages of the Occupy Movement collection.

Likewise, by running a query at the semantic layer of
the NYT corpus requesting the number of articles per year
discussing about Nelson Mandela (Figure 7), we can see
that in 1990 the number of articles is much higher compared
to the previous years, meaning that this year was probably
important for Nelson Mandela (indeed, as in 1990 Nelson
Mandela was released from prison).

1SELECT ?year (COUNT(DISTINCT ?article) AS ?num) WHERE {
2 ?article dc:date ?date ; schema:mentions ?entity .
3 ?entity oae:hasMatchedURI dbr:Nelson_Mandela
4} GROUP BY (year(?date) AS ?year) order by ?year

Fig. 7: SPARQL query for retrieving the number of articles
per year mentioning Nelson Mandela.

Robustness (Q4) and Multilinguality (Q5). Each entity
extracted from the archived documents is assigned a unique
URI (together with a confidence score) which can be used for
retrieving documents and information related to that entity.
This means that all different mentions of an entity (e.g.,
name variants or names in different languages) are assigned
the same unique URI. Thereby, we can query a semantic
layer and retrieve information related to one or more entities
without having to worry about the names of the entities (like
in the queries of Figures 4-6). Of course, this also depends
on the entity linking system used for extracting the entities,
specifically on its “time-awareness” and correct disambigua-
tion (e.g., for understanding that Leningrad corresponds to the
DBpedia URI http://dbpedia.org/resource/Saint Petersburg),
as well as on whether it supports the identification of entities

in different languages (e.g., for assigning the same URI
http://dbpedia.org/resource/Abortion to both “abortion” and
“Schwangerschaftsabbruch”).
Interoperability (Q6). RDF is a standard model for data
interchange on the Web and has features that facilitate
data integration. Describing metadata and content-based
information about web archives in RDF makes their contents
machine understandable, and allows their direct exploitation
by other systems and tools. Moreover, following the LOD
principles for publishing a semantic layer enables other
systems to directly access it, while the advanced query
capabilities that it offers allow the easy identification of an
interesting part of a web archive (related to a time period and
some entities) by just writing and submitting a SPARQL query.

V. EVALUATION

Our objective is to show that for a bit more complex
information needs (e.g., of exploratory nature), keyword-
based search systems return poor results and thus there is the
need for more advanced information seeking strategies. This
corresponds to our first motivating questions (Q1). We also
study the quality of the results returned by a semantic layer
for identifying possible problems and limitations.
Setup. We have defined a set of 20 information needs
of exploratory nature. Each information need requests
documents of a specific time period, related to some entities
of interest. We used the NYT corpus as the underlying
archived collection. For example, “find articles of June 2010
discussing about African-American film producers” is such
an exploratory information need.

Each of the information needs corresponds to a SPARQL
query and to a free-text query that better describes the
information need (in our evaluation we consider one
interaction step, i.e., one submitted query). As an example,
for the information need “find articles of June 2010
discussing about African-American film producers”, the free-
text query that is used is “African-American film producer”
(we manually specify the date range to each system). We
evaluated and compared the results returned by the SPARQL
query over the semantic layer with the results returned by the
following two keyword-based search systems operating over
the NYT corpus: a) Google News (adding at the end of the
query the string “site:nytimes.com” for returning only results
from this domain), b) HistDiv [18] (which uses a different,
diversity-oriented approach for searching news archives).
Moreover, in the reported results we did not consider 23
articles (out of totally 356 articles) returned by the SPARQL
queries because they do not exist in Google News.

For each information need, we measure: i) the number
of hits returned by the SPARQL query (denoted as S); ii)
the number of relevant hits returned by the SPARQL query
(denoted as SR); iii) the number of hits returned by each
search system (denoted as K); iv) the number of relevant
hits returned by each search system, existing in the set of
relevant hits returned by the SPARQL query (denoted as
KR ∈ SR); and v) The number of relevant hits returned by
each search system, not existing in the set of relevant hits
returned by the SPARQL query (denoted as KR /∈ SR). The

TABLE I: Comparative evaluation results on effectiveness.

Google HistDiv
S SR K

KR∈
SR

KR /∈
SR

K
KR∈
SR

KR /∈
SR

1 27 27 8 0 0 0 0 0
2 34 27 1 0 1 3 2 1
3 37 33 0 0 0 1 0 0
4 16 16 0 0 0 0 0 0
5 11 9 0 0 0 0 0 0
6 14 14 1 0 0 0 0 0
7 18 2 1 0 0 0 0 0
8 8 8 1 0 0 4 0 3
9 11 1 0 0 0 0 0 0
10 15 14 0 0 0 0 0 0
11 15 1 0 0 0 0 0 0
12 12 8 0 0 0 0 0 0
13 13 13 0 0 0 0 0 0
14 16 15 2 0 0 0 0 0
15 15 9 0 0 0 0 0 0
16 12 10 6 0 0 25 3 3
17 15 13 1 1 0 2 1 0
18 13 11 1 0 0 0 0 0
19 16 15 1 0 0 0 0 0
20 15 15 1 0 1 0 0 0

set of information needs (together with the corresponding
SPARQL and free-text queries), as well as the full results
and the relevance judgements, are publicly available14.
Results. Table I shows the results. We notice that the keyword-
based search systems cannot retrieve many relevant hits, while
for many cases the number of returned results is zero. This
illustrates that their effectiveness is poor for more advanced
information needs like those in our experiments (considering
however that we allow one interaction step). The reason for
this poor performance is the fact that each information need
describes a category of entities which refers to a number of
(possibly unknown) entities, while the corresponding free-text
query does not contain the entity names. For example, the
query “African-American film producer” does not contain
the actual names of any of these film producers. Note that
during an exploratory search process, users may be unfamiliar
with the domain of their goal (e.g., they may not know the
names of the entities of interest), may be unsure about the
ways to achieve their goal (e.g., not sure about the query
to submit to a search system), or may need to learn about
the topic in order to understand how to achieve their goal
(e.g., learn facts about some entities of interest) [2]. For
achieving a better performance, the user should probably first
find entities belonging to the corresponding information need
and then submit queries using the entity names in the query
terms. Thus, multiple interaction and exploration steps may
be needed. However this can be infeasible, for example in
case of a large number of entities of interest.

Nevertheless, the results also show that in a few cases the
search system returns relevant hits that are not returned by
the SPARQL query (e.g., #2 and #20 for Google, #2, #8 and
#16 for HistDiv). In addition, some of the hits returned by the
SPARQL query are not relevant (e.g., 7 results of #2), while
especially in three cases (#7, #9, and #11), this number is very

14http://l3s.de/owa/semanticlayers/SemLayerEval.zip

large. This is due to disambiguation error of the entity linking
system. For example, for the information need #9 (“Find ar-
ticles discussing about Australian Cricketers who played One
Day Internationals”), the entity extraction system wrongly
linked the name “John Dyson” to the former international
cricketer John Dyson, instead of the deputy mayor John Dyson
(at the time of Rudolph Giuliani’s mayoralty) discussed in the
articles. Therefore, the performance of the entity extraction
system as well as the confidence threshold used for entity dis-
ambiguation can affect the quality of the retrieved results. Ap-
plying a low confidence threshold can increase recall, however
many irrelevant hits may also be returned. On the contrary, by
applying a high confidence threshold, the returned results are
less but the probability that they are correct is higher.

To sum up, we have identified the following problems that
can affect the quality of the results:
− False positive: A SPARQL query may return a result which
is not relevant, due to disambiguation error of the underlying
entity extraction system.
− False negative: A SPARQL query may not return a relevant
result because: i) the entity extraction system did not manage
to recognize one of the entities of interest, ii) the entity extrac-
tion system did not disambiguate correctly an extracted entity
of interest, iii) the confidence score of the extracted entity of
interest is under the threshold used for entity disambiguation.
− Temporal inconsistency: A SPARQL query may return
an irrelevant hit or may not return a relevant hit, because
a property of an entity of interest has changed value. For
example, the query of Figure 5 may return a tweet for a
basketball player who was playing in a different team at the
time the tweet was posted (although this also depends on
user’s intention, since he/she may be interested in also such
players). Likewise, a query may not return a hit because the
knowledge base (from which we retrieve the list of players)
may not contain information about the team’s old players.
Thus, the contents of the knowledge base, its “freshness” and
its completeness, affect the quality of the retrieved results.

Efficiency of Query Answering: The execution time of
a SPARQL query over a semantic layer mainly depends
on: a) the efficiency of the triplestore hosting the semantic
layer (e.g., in-memory triplestores are more efficient), b)
the efficiency of the server hosting the triplestore (available
main memory, etc.), and c) the query itself since some
SPARQL operators are costly (like the operators FILTER
and OPTIONAL). Moreover, if the query contains one or
more SERVICE operators (like the queries of Figures 4-6),
then its execution time is also affected by the efficiency of
the remote endpoints at the time of the request.

Indicatively, the average execution time of the 20 queries
used in our evaluation was about 400 ms, with minimum
56 ms for #16 and maximum 2.4 sec for #15 (we run the
queries 10 times within 3 days and here we report the average
values). All these queries use the SERVICE operator for
querying DBpedia’s SPARQL endpoint but not any FILTER
or OPTIONAL operator, while the semantic layer was hosted
in a Virtuoso server installed in a modest personal computer
(MacBook Pro, Intel Core i5, 8GB main memory) and we
run the queries in Java 1.8 using Apache Jena 3.1.

VI. CONCLUSION

We have introduced a model and a framework for describing
and publishing metadata and semantic information about web
archives. The constructed semantic layers allow: i) exploring
web archives in a more advanced way based on entities,
events and concepts extracted from the archived documents
and linked to web resources; ii) integrating information (even
at query-execution time) coming from multiple knowledge
bases and semantic layers; iii) inferring new knowledge
that is very laborious to derive otherwise; iv) coping with
common problems when exploring web archives like temporal
reference variants and multilinguality; and v) making the
contents of web archives machine understandable, thereby
enabling their direct exploitation by other systems and
tools. The results of a comparative evaluation showed that
semantic layers can answer complex information needs that
keyword-based search systems fail to satisfy. The evaluation
also enabled us to identify problems that can affect the
effectiveness of query answering.

We believe that constructing semantic layers is the first
step towards more advanced and meaningful exploration
of web archives. Our vision is to enrich the LOD cloud15

with semantic layers, i.e., with knowledge bases describing
metadata and semantic information about archived collections.

Regarding future work and research, user-friendly interfaces
should be developed on top of semantic layers for allowing
end-users to easily and efficiently explore web archives.
Another interesting direction is to study approaches for
ranking the results returned by SPARQL queries.

Acknowledgements. The work was partially funded by
the European Commission for the ERC Advanced Grant
ALEXANDRIA (No. 339233).

REFERENCES

[1] G. Weikum, M. Spaniol, N. Ntarmos, P. Triantafillou, A. Benczúr,
S. Kirkpatrick, P. Rigaux, and M. Williamson, “Longitudinal analytics
on web archive data: It’s about time!” in 5th Biennial Conference on
Innovative Data Systems Research. CIDR 2011, 2011.

[2] G. Marchionini, “Exploratory search: from finding to understanding,”
Communications of the ACM, vol. 49, no. 4, 2006.

[3] M. Whitelaw, “Generous interfaces for digital cultural collections,”
Digital Humanities Quarterly, vol. 9, no. 1, 2015.

[4] D. Brickley, R. V. Guha, and B. McBride, “Rdf schema 1.1,” W3C
recommendation, 2014.

[5] E. PrudHommeaux, A. Seaborne et al., “Sparql query language for
rdf,” W3C recommendation, vol. 15, 2008.

[6] E. Prudhommeaux, C. Buil-Aranda et al., “Sparql 1.1 federated query,”
W3C Recommendation, vol. 21, 2013.

[7] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer et al.,
“Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[8] A. AlSum, M. C. Weigle, M. L. Nelson, and H. Van de Sompel,
“Profiling web archive coverage for top-level domain and content
language,” International Journal on Digital Libraries, vol. 14, no. 3-4,
pp. 149–166, 2014.

[9] S. Alam, M. L. Nelson, H. Van de Sompel, L. L. Balakireva,
H. Shankar, and D. S. Rosenthal, “Web archive profiling through cdx
summarization,” in International Conference on Theory and Practice
of Digital Libraries. Springer, 2015.

[10] N. J. Bornand, L. Balakireva, and H. Van de Sompel, “Routing
memento requests using binary classifiers,” in 16th ACM/IEEE-CS on
Joint Conference on Digital Libraries. ACM, 2016.

15http://lod-cloud.net/

[11] S. Alam, M. L. Nelson, H. Van de Sompel, and D. S. Rosenthal, “Web
archive profiling through fulltext search,” in International Conference
on Theory and Practice of Digital Libraries. Springer, 2016.

[12] K. Padia, Y. AlNoamany, and M. C. Weigle, “Visualizing digital
collections at archive-it,” in 12th ACM/IEEE-CS joint conference on
Digital Libraries. ACM, 2012.

[13] H. Holzmann and A. Anand, “Tempas: Temporal archive search based
on tags,” in International Conference on World Wide Web, 2016.

[14] N. Kanhabua, P. Kemkes, W. Nejdl, T. N. Nguyen, F. Reis, and N. K.
Tran, “How to search the internet archive without indexing it,” in 20th
International Conference on Theory and Practice of Digital Libraries.
Springer, 2016.

[15] K. D. Vo, T. Tran, T. N. Nguyen, X. Zhu, and W. Nejdl, “Can we find
documents in web archives without knowing their contents?” in ACM
Conference on Web Science, 2016.

[16] Z. T. Fernando, I. Marenzi, W. Nejdl, and R. Kalyani, “Archiveweb:
Collaboratively extending and exploring web archive collections,” in
International Conference on Theory and Practice of Digital Libraries.
Springer, 2016.

[17] A. Jackson, J. Lin, I. Milligan, and N. Ruest, “Desiderata for exploratory
search interfaces to web archives in support of scholarly activities,” in
16th ACM/IEEE-CS on Joint Conference on Digital Libraries. ACM,
2016.

[18] J. Singh, W. Nejdl, and A. Anand, “History by diversity: Helping
historians search news archives,” in ACM Conference on Human
Information Interaction and Retrieval, 2016.

[19] S. Ferré, “Sparklis: a sparql endpoint explorer for expressive question
answering,” in ISWC Posters & Demonstrations Track, 2014.

[20] G. M. Sacco and Y. Tzitzikas, Dynamic taxonomies and faceted search:
theory, practice, and experience. Springer Science & Business Media,
2009, vol. 25.

[21] Y. Tzitzikas, N. Manolis, and P. Papadakos, “Faceted exploration of
rdf/s datasets: a survey,” Journal of Intelligent Information Systems, pp.
1–36, 2016.

[22] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber,
and P. Cimiano, “Template-based question answering over rdf data,” in
21st international conference on World Wide Web. ACM, 2012.

[23] J. Lin, M. Gholami, and J. Rao, “Infrastructure for supporting
exploration and discovery in web archives,” in International Conference
on World Wide Web, 2014.

[24] H. Holzmann, V. Goel, and A. Anand, “Archivespark: Efficient web
archive access, extraction and derivation,” in 16th ACM/IEEE-CS on
Joint Conference on Digital Libraries. ACM, 2016.

[25] “Apache spark: Lightning-fast cluster computing,” 2015.
[26] E. Sandhaus, “The new york times annotated corpus,” Linguistic Data

Consortium, Philadelphia, vol. 6, no. 12, 2008.
[27] H. Van de Sompel, M. Nelson, and R. Sanderson, “Rfc 7089-http

framework for time-based access to resource states-memento,” Internet
Engineering Task Force (IETF), RFC, 2013.

[28] R. Sanderson, P. Ciccarese, H. Van de Sompel, S. Bradshaw, D. Brickley,
L. J. G. a Castro, T. Clark, T. Cole, P. Desenne, A. Gerber et al., “Open
annotation data model,” W3C community draft, 2013.

[29] P. Fafalios, M. Baritakis, and Y. Tzitzikas, “Exploiting linked data for
open and configurable named entity extraction,” International Journal
on Artificial Intelligence Tools, vol. 24, no. 02, 2015.

[30] T. Heath and C. Bizer, “Linked data: Evolving the web into a global
data space,” Synthesis lectures on the semantic web: theory and
technology, vol. 1, no. 1, pp. 1–136, 2011.

[31] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of
Database Systems. Springer, 2009, pp. 2008–2009.

[32] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, “Describing
linked datasets with the void vocabulary,” 2011.

[33] L. Moreau and P. Missier, “The prov data model,” 2013.
[34] P. Ferragina and U. Scaiella, “Tagme: on-the-fly annotation of short

text fragments (by wikipedia entities),” in 19th ACM international
conference on Information and knowledge management. ACM, 2010.

[35] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol,
B. Taneva, S. Thater, and G. Weikum, “Robust disambiguation of
named entities in text,” in Conference on Empirical Methods in Natural
Language Processing, 2011.

[36] A. Moro, A. Raganato, and R. Navigli, “Entity linking meets word sense
disambiguation: a unified approach,” Transactions of the Association
for Computational Linguistics, vol. 2, 2014.

[37] D. Beckett and B. McBride, “Rdf/xml syntax specification (revised),”
W3C recommendation, vol. 10, 2004.

[38] R. Blanco, G. Ottaviano, and E. Meij, “Fast and space-efficient entity
linking in queries,” in Eight ACM International Conference on Web
Search and Data Mining. New York, NY, USA: ACM, 2015.

