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ABSTRACT

Most real-world graphs collected from the Web like Web graphs
and social network graphs are incomplete. This leads to inaccu-
rate estimates of graph properties based on link analysis such as
PageRank. In this paper we focus on studying such deviations in
ordering/ranking imposed by PageRank over incomplete graphs.
We �rst show that deviations in rankings induced by PageRank
are indeed possible. We measure how much a ranking, induced
by PageRank, on an input graph could deviate from the original
unseen graph. More importantly, we are interested in conceiving
a measure that approximates the rank correlation among them
without any knowledge of the original graph. To this extent we
formulate the HAK measure that is based on computing the impact
redistribution of PageRank according to the local graph structure.
Finally, we perform extensive experiments on both real-world Web
and social network graphs with more than 100M vertices and 10B
edges as well as synthetic graphs to showcase the utility of HAK.
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1 INTRODUCTION

Most real-world graphs collected from the Web like Web graphs
and social network graphs are incomplete or in other words their
graph topology is not known in entirety [13, 28]. Especially if not
crawled for a particular purpose or subset, but extracted from exist-
ing crawls, such as Web archives. The goal of Web archive crawlers
is to capture as much as possible starting from some seed set within
some national domain or even broader, given the available but lim-
ited resources [9]. Incompleteness is an inherent trade-o� already
in the design decision of such an archive [14]. Complicating matters
further, Web archives are often not constructed in one piece but
by merging partial crawls [19]. Additional reasons for the incom-
pleteness in Web archives include the restrictive politeness policies
(i.e., robots.txt) or random timeouts of Web servers. Several studies
on this topic have shown that incompleteness is indeed a common
issue [1–3, 22], inevitably a�ecting the graphs extracted from such
crawls as well.
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As a result, important graph properties and measures used for link
analysis and structural characterization like authority of vertices
might be inherently �awed or exhibit deviations from their origi-
nal values. This is commonly observed where users are typically
agnostic to the incompleteness of the obtained graph, hoping that
the input graph is a reasonable representative sample of the under-
lying (unseen) original graph. Some of the well-known measures
for computing authority of vertices or relative ordering of vertex
authorities based on random walks are PageRank [32] and its vari-
ants [15, 18, 25].
As an example, consider PageRank computed over the .gov Web
graph that we will analyze in detail later in this work. Here, the
women.nasa.gov (Women@NASA) page has a high PageRank value
and is subsequently found within the top 300 pages. However, on
a closer examination we observe that most of its PageRank is
contributed by an in-link from the highly popular NASA homepage
(nasa.gov). If for some reason this particular in-link is not crawled,
e.g., due to a temporary downtime or the decision by NASA to
exclude their homepage from being crawled, this would cause a
large decrease in its PageRank and hence a severe rank deviation
in the obtained crawl.
One might argue that this is an unlikely case since important pages
enjoy a high priority and are therefore commonly crawled, but this
might not always be the case in reality. To support our claim we
performed the following experiment. We ranked pages in a graph
constructed from a .de Web archive in 20121 based on (1) inlinks
and (2) PageRanks. The above mentioned graph considered only
links that emerged in 2012 [20]. We then checked if the top ranked
pages in this incomplete graph were indeed archived in that year.
Our experiments show that from among the top 1000 pages, ranked
according to inlinks, roughly 30% are contained in the archive.
According to PageRank rankings, less than 20% of the top 1000
pages are contained in the archive. With this small experiment we
show that high priority vertices can indeed be missed in real world
crawls, which can further cause a rank deviation in the obtained
incomplete graph.
We, therefore, study the deviation in orderings/rankings imposed
by PageRank over incomplete graphs. Vertices in our input crawls
are either completely crawled (all neighbors are known) or are un-
crawled (none of their neighbors are known), which we refer to as
ghost vertices. Based on this, the research questions we ask are the
following:

• RQ I : Do incomplete real-world graphs show a deviation in their
PageRank orderings when compared to full network topology?

• RQ II : How can we reliably measure the extent of such ranking
deviations for incomplete graphs?

1the archive has been generously provided to us by the Internet Archive
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Towards these, we perform extensive experiments on both real-
world Web and social network graphs with more than 100 million
vertices and 10 billion edges. We �rst establish empirically that real-
world networks indeed show a deviation in their PageRank order-
ings when not crawled completely compared to the complete graph
(RQ I). We observe ranking correlations (measured by Kendall’s
Tau) dropping down to 0.55 on Web graphs when only 50% of it is
crawled. Second, users and applications that use rankings induced
by PageRank as a feature for downstream ranking and learning
tasks would naturally be interested in estimating such a deviation
from the (incomplete) input graph at hand as a measure of con�-
dence. Therefore, as an answer to RQ II, we propose a measure
called HAK (an acronym of the authors’ names) that estimates the
ranking deviation of an incomplete input graph when compared to
the original graph.

2 RELATEDWORK

Ng et al. [31] analyzed the conditions under which eigenvector
methods like PageRank and HITS can provide reliable rankings
under perturbations to the linkage patterns for a given collection. In
particular for PageRank they showed that, if perturbed or modi�ed
web pages, i.e., links from the page are removed or are not followed,
did not have a high PageRank score in the original graph, then the
new PageRank score will not be far from the original. However,
this would change when top pages in the crawl are perturbed. In
particular, when some high ranked page is missed as we discussed
in the previous section, the resulting PageRank rankings will be
highly unstable. Moreover their paper discusses the ranking devia-
tions only for the top 10 items in either of the considered rankings
though. We on the other hand, provide a quantitative evaluation
using Kendall’s Tau for a much larger fraction of the graph, which is
crucial for the use of PageRank in Information Retrieval scenarios
where a selected set of relevant documents are ranked. Further,
we provide a measure to estimate ranking deviations of vertices
in the given graph with respect to their orderings in the original
unmodi�ed graph.
Boldi et al. [6] also show the paradoxical e�ects of PageRank
computation on Web graphs. In contrast to our work though, they
discuss a measure of e�ectiveness for crawl strategies based on
whether the graph obtained after a partial visit is in some sense
representative of the underlying Web graph for the PageRank
computation. Similar to our setting, they study how rapidly the
computation of PageRank over the visited subgraph yields relative
ranks, measured by Kendall’s Tau, that agree with the ones the
vertices have in the complete graph.
In [34], unlike other approaches that sample vertices, the authors
operate on a given subset of vertices and consider the general
problem of maintaining multi-scale graph structures by preserving
a distance metric based on PageRank among all pairs of sampled
vertices.
The other area of related work comprises of graph sampling ap-
proaches which can be broadly classi�ed into two categories: tra-
versal based methods [26, 29, 35] and random walk based meth-
ods [13, 21, 28]. Graph-traversal based methods employ breadth-
�rst search (BFS) or the depth-�rst search (DFS) algorithm to sample
vertices and are typically shown to exhibit bias towards high-degree
vertices [35]. Maiya and Berger-Wolf [29] compare various traversal
based algorithms and de�ne representativeness of a sample while

proposing how to guide the sampling process towards inclusion of
desired properties. On the other hand, the random walk based meth-
ods are popular for graph sampling because they can produce unbi-
ased samples or generate samples with a known bias [13, 21, 28, 37].
One of the popular sampling algorithms used for Web graphs is the
Forest Fire algorithm by Leskovec and Faloutsos [26], a generative
graph model, in which new edges are added via an iterative “forest
�re” burning process where it is shown to produce graphs exhibit-
ing a network community pro�le plot similar to many real-world
graphs. We use this approach in generating synthetic real-world
graphs. Other related works dealt with estimating graph properties
such as degree distribution estimation [13], clustering coe�cient
estimation [17], size estimation [23], and average degree estima-
tion [10]. However, most of these works assume a known graph
topology. Our work focuses on the unknown graph topology, an
arguably more general and useful scenario in Web graphs and social
networks gathered by crawlers.

3 PRELIMINARIES AND PROBLEM

PageRank. As originally conceived, PageRank ranks vertices of
a directed graph G = (V ,E) where V and E are the vertices and
edges respectively, based on the topological structure of the graph
using random walks [32]. The problem we are addressing in this
paper is attributed to this random walk model behind PageRank,
representing the authority or importance of a vertex. For some �xed
probabilityα , a surfer at vertexv ∈ V jumps to a random vertex with
probability α and goes to a linked vertex with probability 1−α . The
authority of a vertex v is the expected sum of the importance of all
the vertices u that link to v . Consequently, a vertex receives a high
PageRank value and is ranked at the top by ordering the webpages
by importance when it is either connected by many incoming edges
or reachable from another important page.
We �rst de�ne the notions of target graph, crawl and ghost vertices
in the context of incompleteness in graphs due to their collection
process:

De�nition 3.1 (Target graph). The subset of vertices (with the in-
duced edges) of a larger graph (e.g., the Web) that is theoretically
reachable by a crawler given its seeds, e.g., a domain, a top-level
domain, or all webpages that belong to a certain topic in case of
focused crawlers. This graph would be available if every link was
followed and every page captured by the crawler, illustrated by the
target in Figure 1.

De�nition 3.2 (Crawled graph or Crawl). The (incomplete) graph
derived from the set of webpages that have actually been visited by
the crawler, discovered/linked yet uncrawled pages are not included.
This subset of the target graph is illustrated by the crawl in Figure 1.

De�nition 3.3 (Ghost vertex). Although a hyperlink on a crawled
page points to another page that belongs to the target graph, there
is a chance the crawler never visited and saved that page, i.e., it
is not part the crawl. Such a page or vertex is referred to as ghost
vertex, shown by the gray vertices outside the crawl in Figure 1.
Ranking Deviations. The deviation among two rankings induced
by PageRank is a global objective, independent of a speci�c query.
Hence, local or relevance-based measures such as nDCG are not
applicable here. The most common metrics to quantify rank corre-
lation are Spearman’s Rho and Kendall’s Tau, which are both similar
as they are special cases of a more general correlation coe�cient
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Figure 1: The neighborhood of a webpage in di�erent sub-

graphs of the Web: The out-degree di�ers as neighbors be-

come ghost vertices in the target graph or crawl. While the

target represents the desired subset to be crawled, the crawl

illustrates what has actually been captured, making this an

incomplete graph (cp. Sec. 3).

and measure relative displacements. In this work, we use Kendall’s
Tau [24], ranging from [−1, 1], with 1 corresponding to a perfect
rank correlation, 0 corresponding to no correlation and −1 to a
perfect inverse correlation. This is used to compare the correla-
tion/deviation of rankings computed on the vertices of a crawl GC
with respect to that of the target graph GT .
In Figure 2 we provide a few examples of possible graph struc-
tures, where partial knowledge of the graph may a�ect the ranking
returned by the PageRank values. We remark that in the next sec-
tions, we will also provide empirical evidence, supporting the fact
that there exists a ranking deviations in crawls of some real-world
graphs. In the �rst sub�gure (a), we show the positive case of a
DAG where the partial knowledge of the graph will not cause any
ranking deviations. As only the topmost vertices shown here re-
ceive signi�cantly more links than the others, these are also the
most important vertices. It is easy to see here that generating a
crawl from this structure by removing some vertices will not cause
any signi�cant changes in the ranking orderings of the crawl. In the
next sub�gure (b), a backlink has been introduced (left) that feeds
back the importance of a top most page to a previously unimportant
page and its successors. This importance gets propagated through
the cycle which has been created due to the inserted backlink. In
the next sub�gure (c), we illustrate the case of a crawl in which
vertices are removed uniformly at random. The chances here are
that primarily unimportant vertices are removed, which would still
not cause much deviations in the ranking orderings. Finally, if we
remove any vertex from the cycle as shown in sub�gure (d), its
succeeding vertices drastically lose in importance and hence, the
ranking among the pages in the crawl changes noticeably.

4 THE HAK MEASURE

With our measure, we estimate quantitatively how reliable a crawl
is with respect to the relative ordering of the PageRank values on
its vertices compared to the corresponding target graph. To this end,
we �rst try to estimate the size of the target graph: Given the
crawled vertex set and the distinct hyperlinks on the corresponding
webpages, some of which are pointing to an uncrawled page (ghost
vertex), how big is the target graph or a subgraph that would poten-
tially impact or contribute to the PageRank values of the vertices in

(a) (b) (c) (d)

Figure 2: Some graph structures: A darker color of the ver-

tices represents a higher importance (cp. Sec. 3).

the crawl? We show that for simple crawling strategies where it can
be assumed that each vertex is part of the crawl independently from
all other vertices with some sampling probability ps , the size of the
target graph can be estimated in terms of a very simple property of
the crawled vertices, namely, the fraction of its crawled neighbors,
referred to as �delity. Secondly, we try to estimate the impact

exerted by the vertices in the target graph on the crawled vertices,
which we in turn use to estimate the number of discordant pairs in
the expected rankings, like in Kendall’s Tau.
Let C denote the set of vertices of the crawl graph and let n be the
number of vertices in this graph. The main steps in our computation
are as follows:
(1) Estimate the size of the target graph by using connectivity

properties of the crawl. Let T represent the set of vertices in
this target graph.

(2) Estimate the impact (as functions of PageRank) of the vertices
in C .

(3) Assume that the vertices in T exert similar impacts on other
vertices.

(4) Estimate the number of discordant pairs due to impacts exerted
by vertices in T −C on vertices in C .

4.1 Estimating the Target Graph

Let N denote the number of vertices in the target graph. In this
section we will estimate the value of N under the simpli�ed as-
sumption that the crawl is constructed by sampling vertices from
the target graph independently and uniformly at random with some
probability ps . Note that if ps is known, one can easily estimate
N as n

ps . We therefore �rst estimate ps from the connectivity of
the crawl, using a property that we refer to as �delity: For any
vertex v ∈ T , we de�ne �delity (γ (v)) of v as the ratio of its im-
mediate neighbors in C to its total out-degree (number of distinct
hyperlinks on a webpage pointing to vertex in T ). Let dc (v) count
the number of vertices v ′ ∈ C reachable from v in one step. d (v)
denotes the total out-degree of v in the target graph. This results
in the following de�nition:

De�nition 4.1 (Fidelity). The �delity of a vertexv ∈ T ,γ (v), is given
by γ (v) = dc (v)

d (v) and the average �delity of all vertices in C is

γ (C) =

∑
v ∈C γ (v)

n

With ps as the sampling probability, ps · N would be the number
of vertices in the crawl. Hence, using the observed average γ (C)
and the observed size of the crawl (n), we approximate N as n

γ (C) .

4.2 PageRank and Impacts

Despite its incompleteness, PageRank can be computed on the
crawl graph by treating the ghost nodes as dangling nodes. We
use the personalized variant of PageRank for this, starting from



the available nodes in C as seeds (s. Section 5). Given this, for any
vertex v in the crawl C , let π (v) denote the value computed by
PageRank and let N (v) denote the set of succeeding neighbors of
v , reachable from v in one step, hence d (v) = |N (v)|. PageRank
of any vertex u can now be considered as:

π (u) =
∑

v :u ∈N (v)

π (v)

d (v)

Based on these considerations, we introduce a new property, re-
ferred to as impact. The impact of a vertex v ∈ C on one of its
neighbors u ∈ N (v) is de�ned as:

Im(v,u) =
π (v)/d (v)

π (u)

Hence, the total impact on any vertex u ∈ V , received from all its
incoming edges, is 1

π (u)
∑
v :u ∈N (v)

π (v)
d (v) , which is always 1. This

implies that any extra impact of x on a vertex will increase its
PageRank by x times the current PageRank.
The total impact of a vertex v , Im(v) is then de�ned as:

Im(v) =
∑

u ∈N (v)

Im(v,u) =
∑

u ∈N (v)

π (v)/d (v)

π (u)
=

1
d (v)

∑
u ∈N (v)

π (v)

π (u)
.

We denote the average of impacts of vertices in C by Im(C), i.e.
Im(C) =

∑
v∈C Im(v)

n .

4.3 Estimating the Impact of Ghost Vertices

We next compute the impact that could have been exerted by the
ghost vertices on the crawled vertices, if the graph was complete
and the ghost vertices existed. In a setting like ours, where the
(personalized) PageRank is computed from the perspective of the
known crawl (see above), the ghost nodes cannot have a bigger
impact on the crawl than previously leaked to them. Therefore,
we build on the assumption that the impact of each vertex in the
complete target graph T is on average the same as for the crawl:
Im(C). Hence, we approximate the impact exerted by ghost vertices
only as follows:

I = |T −C | · Im(C) = n

(
1

γ (C)
− 1

)
· Im(C).

Some of this extra impact, generated due to ghost vertices, will
be acquired by some or all of the vertices in C , changing their
PageRank values accordingly. This is what eventually will lead to
the deviation in rankings, measured by Kendall’s Tau as the number
of pairs of each two crawled vertices (v,u) ∈ C ×C for which the
order di�ers, i.e., discordant pairs, or is preserved, i.e., concordant
pairs. Since HAK is meant to predict the deviation as assessed by
Kendall’s Tau, we also estimate both these classes of pairs in order
to compute HAK.
The impact of the ghost vertices can be divided among the ver-
tices of the crawl in several ways. For example, it can happen that
the vertex with the lowest PageRank receives the total impact,
increasing its PageRank by a large factor. In this case the number
of discordant pairs is upper bounded by n − 1. Moreover, we know
from [31] that vertices with low original PageRank scores will also
have a low PageRank value in slightly modi�ed graphs. Therefore,
the e�ect of the loss of information because of incomplete crawls is
observed mostly on the PageRanks of the nodes higher in the origi-
nal ranking. We checked experimentally several variants for impact
distributions and the best variant, which is a�rmative with our

tests on real-world and synthetic graphs, is to distribute the total
impact I equally among I vertices. Hence, the expected number

of impacted vertices that belong to the crawled set will be:
I = I · γ (C) .

In the worst case, each of these impacted vertices will result in
forming a discordant pair with each of the una�ected vertex, re-
sulting in a number of discordant pairs of D = (n − I ) · I . Based on
that, HAK is computed with respect to Kendall’s Tau as follows:

HAK =
#concordant pairs - #discordant pairs

# total pairs

=

n(n−1)
2 − D − D

n(n−1)
2

= 1 − 4 ·
D

n(n − 1)
.

5 EXPERIMENTS

To validate our research questions enumerated in Section 1 we con-
sider a host of large real-world graphs as well as synthetic graphs
of di�erent structures and carefully consider crawling strategies
over them. In what follows we �rst describe our setup and ratio-
nale for our evaluation, before we discuss the results of our HAK
experiments.

5.1 Experimental Setup

The described experiments require the availability of crawls as

well as the complete target graphs that these crawls were de-
rived from. This is necessary in order to compute how the rankings
on both graphs di�er and to evaluate the performance of HAK
to estimate this deviation. In reality, neither obtaining the com-
plete target graph is possible nor the actual crawl policy can be
determined accurately. To this extent, we consider very large (as
complete as possible) real-world graphs under the assumption that
those graphs are complete (Sec. 5.1.1). We additionally simulate
alternative topological structures by generating synthetic graphs
(Sec. 5.1.2). We then simulate crawls on these graphs using di�erent
crawling strategies (Sec. 5.1.3). For all graph and crawl combina-
tions we ran PageRank on both graphs (crawl and target graphs)
and compared the rankings using Kendall’s Tau to evaluate HAK
(Sec. 5.1.4).

5.1.1 Real-World Graphs. The experiments on real-world graphs
were run on a computer cluster using Apache Spark and its graph
processing framework GraphX [36]. Loading the graphs locally on
a single server was impossible with our available infrastructure
because of their sizes of up to more than 100M vertices and 10B
edges. As discussed earlier, we obtained multiple large real-world
graphs that themselves were incomplete and considered them as
target graphs by discarding edges that connect to ghost vertices.
The following graphs were analyzed and are summarized in Table 1:
• GOV : This graph is based on crawled webpages provided by the

Internet Archive [33]. It was extracted from the latest captures
of all their archived webpages under the .gov top-level domain
(TLD) from 2005 to 2013.
• DE : Like GOV, this .de TLD graph was also extracted from

webpages archived by the Internet Archive, crawled in 2012 and
generously provided to us in the project ALEXANDRIA2.

2http://alexandria-project.eu

http://alexandria-project.eu


GOV DE UK Friendster

#V 301,128,778 247,641,473 39,454,746 68,349,466
#Vtarget 5,418,054 133,895,590 38,838,959 61,100,375
#E 2,111,229,433 14,795,732,782 936,364,282 2,586,147,869
#Etarget 180,657,788 10,085,242,536 928,939,162 2,575,600,737

Table 1: Statistics on the studied real-world graphs, see Sec-

tions 5.1.3 and 5.1.1 for details (#V : original number of ver-

tices, #E: original number of edges, #Vtarget: target number

of vertices, #Etarget: target number of edges).

• UK : This .uk TLD crawl from 2005 is publicly available, already
in the form of a graph without corresponding webpages [5, 7].

• Friendster : Unlike the previous Web graphs, this is a publicly
available social network, extracted from an extensive crawl of
the former online platform Friendster.com in June 2011 [4].

5.1.2 Synthetic Graphs. In order to investigate ranking devi-
ations caused by di�erent crawling strategies on di�erent graph
topologies, we ran a more comprehensive set of experiments on
smaller, synthetically generated target graphs. This allowed for
more extensive experimentation as the experiments could run lo-
cally on a single server, using the NetworkX graph analysis frame-
work [16]. All synthetic graphs that we studied in this work (cp.
Table 2) were generated with 10,000 vertices to be reasonably sized
for a thorough analysis.
The graphs were constructed using well-known graph generators,
except for FFBacklinks, which is an extension by us to the ForestFire
model. Although Forest Fire graphs include cycles, the model never
generates backlinks from the early created vertices, which are more
likely to receive many in-links over time, to newer ones. However,
these links are common on the Web, where already prominent pages
add links to less important ones, having a strong impact on the
value propagation in PageRank (s. Sec. 3). In this graph, we added
such edges between 0.05% of all pairs of an old and young vertex.

5.1.3 Seed Selection and Crawling. Crawling can be considered
a special case of network sampling from a more practical point of
view, where subsequent vertices can only be chosen from already
discovered ones or seeds. Maiya and Berger-Wolf [30] de�ne this
type of sampling as link-trace sampling and give a nice overview
of available models for this behavior. Naturally, such approaches
commonly exhibit BFS-like (Breadth-First Search) growth, but fea-
ture di�erent strategies to prioritize or select the next vertices to
be crawled. These variations determine the probability of a vertex
to be part of the �nal sample.
How we model crawls. Although most crawlers employ BFS-like
traversals, there are practical constraints like random timeouts and
crawl restrictions on websites that make it hard to model crawls
perfectly. Therefore, we focus on the most impartial strategy, which
is vanilla BFS, but explicitely produce partial crawls by dropping
x% of the vertices of the input graph (where x ∈ {10, 20, 30, 40, 50}).
We refer to this percentage as the block fraction and the remainder
as desired fraction.
Statistics about the target graphs (Vtarget and Etarget), which are
potentially reachable from the seeds by not blocking any vertices
are shown in Table 1. Additionally, we discuss a few edge cases by
looking at slight variations of BFS as well as SEC with the synthetic
graphs. Due to their scale it was computationally infeasible for us

Graph generator #Edges Parameters

Gn,p [11, 12] 299,722 p ≈ 0.0003 (based on #E in Table 1)
ScaleFree[8] 21,732 α = 0.41, β = 0.54, γ = 0.05 (default)
ForestFire[27] 87,060 pf = 0.37, pb = 0.32 (most realistic [27])
FFBacklinks 96,262 pf = 0.37, pb = 0.32, pbacklink = 0.0005

Table 2: Synthetic graphs (all have 10,000 vertices).

given our cluster setup to analyze these on real-world graphs as
well. More details on the crawling strategies as well as our seed
selection are given in the Appendix A.

5.1.4 Evaluation strategy. The objective of this evaluation is to
assess ranking deviations as quanti�ed by Kendall’s Tau (cf. Sec. 3)
for rankings induced by PageRank, computed on a complete target
graph vs. an incomplete crawl and compare it against our HAK mea-
sure, which is designed to yield values on the same scale. For this,
we focus only on high-ranked vertices, as these are typically
more interesting in most practical scenarios [31]: Firstly, because
there is no tangible score di�erence between the PageRank values
of the tail vertices. Secondly, ranking deviations in authoritative
vertices are typically considered more severe than among the tail
ones. Since Kendall’s Tau makes no distinctions where rank re-
versals take place, we compared the ordering among the top 30%,
top 50% and top 70% vertices of the crawl and target graph that
appeared in both graphs according to the corresponding PageRank
values. This also helps us characterize where the rank reversals
indeed do appear.
The rankings for each of the graphs are computed based on the
PageRank values. While we employed the regular version PageR-
ank on the crawl (with added ghost vertices as sinks), we used the
personalized variant of PageRank for running it on the target graph.
In this version, the algorithm is personalized to a set of vertices,
which constitute the starting points as well as teleportation desti-
nations in the algorithm [32]. The resulting PageRank values can
be interpreted as their importance with respect to these vertices or
the domain represented by the crawl. Both variants of PageRank
ran for 30 iterations with the damping factor parameter set to the
frequently cited value of 0.85.

5.2 Crawls and Ranking Deviations in Graphs

In this section, we aim to answer RQ I and justify the need for
estimating ranking deviations before employing PageRank for
incomplete graphs. In particular, we argue about the results where
we witness noticeable ranking deviations of partial crawls with
respect to target graphs.
We clearly observe that all real-world graphs exhibit a decreasing
τ with increasing block fraction (see Figure 3). Most acutely, τ
decreases to 0.55 for the GOV. Synthetic graphs like Gn,p and
FFBacklinks (�rst and last row in Figure 4) exhibit a similar trend
with τ decreasing for increasing block fraction. On the other hand,
for the ScaleFree (second row) and ForeFire graphs (third row), we
do not witness much change in the ranking orderings, except in
the BFS crawls.
A detailed study of the crawls reveals the reasons for such disparate
trends for ScaleFree and ForeFire: the crawling strategy combined
with the underlying structural properties of the graph sometimes
lead to extremely small crawls (n < 1, 000), much below the desired
fraction (cp. Sec. 5.1.3). First, we observe a scarcity of backlinks in
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Figure 3: Ranking deviations measured and estimated for

real-world graphs and crawls for di�erent fractions of un-

crawled vertices.

ForestFire and ScaleFree. That leads to these graphs to be DAG-
like without an inadequate number of cycles in the corresponding
graphs (cp. Sec. 3). PageRank computations over such graphs (or
over their subgraphs) tend to �nish quickly since the lack cycles
prohibit the random walk to re-cycle back into the graph. This
results in small high-�delity crawls that do not exhibit large ranking
deviations when highly linked vertices are prioritized, explicitly
(SEC) or by chance (BfsRnd and BfsGeo). Only the BFS strategy that
explicitly blocks random vertices causes a deviation in these crawls,
as top vertices may be missed as well (conceivable on the Web for
di�erent reasons, e.g., restrictive policies and random failures).
Reinforcing our claim, the addition of backlinks in FFBacklinks re-
sulted in a growing ranking deviation with increasing block fraction.
We argue that most of the real-world graphs will not be DAG-like
and will have backlinks inducing large cycles. Moreover, the random
walk nature of PageRank computation increases the importance
of these backlinks (or feedback loops) towards reaching an equilib-
rium state. As the core structure of FFBacklinks still resembles the
original ForestFire graph, the observed rank deviation is much less
severe as compared to Gn,p .
In addition, we observe that the ranking deviations (in most of
the presented cases) increase when we consider a small fraction
of the most important vertices. This indicates that most of the
low rank vertices in the target graph do not �ip their ranks with
the more important ones in the crawl, leading to a lower ratio of
discordant pairs to the overall total number of pairs. On the other
hand, crucial to most applications are the ranking deviations of the
high PageRank vertices, thus making it essential to monitor them.
Finally, we observe that ranking deviation in the Web graphs shown
in Figure 3 are interestingly similar to the random graphs in Figure 4
and less so with other generative models like ForestFire or ScaleFree
graphs. This, we believe, has strong implications in explaining the
structure of Web graphs.

5.3 E�ectiveness of HAK

We �rst discuss about the general applicability of the HAK mea-
sure and then argue about the supporting experimental evidence
reported in Figures 3 and 4. We recall that the main assumption

behind the construction of HAK is that each of the unseen or ghost
vertices from the target graph would exert the same fraction of
impact (on average) to the crawled set as the actual vertices in the
crawl (cp. Sec 4). We ensure this by constructing the target graph
such that each of its vertex has the same fraction of crawled neigh-
bors as the crawled vertices (computed by �delity). This assumption
would not be followed by target graphs, which for example areDAG-
like, because the ghost vertices there might not have edges back
into the crawl. We remark that HAK cannot identify structures
in target graph which are not similar to the crawl, yet leading to
severe ranking changes in the crawl. For instance, consider a very
small crawl with a very high �delity and low impact. In such a
case HAK would always estimate a very low ranking deviation. It
could in the worst happen that there exist a few ghost vertices in
the target graph with very high PageRank, having outgoing edges
to only the low rank vertices in the crawl. Our results in �gures 3
and 4, on the other hand, support the e�ectiveness of HAK in most
of the studied graphs and therefore also validate our assumptions
behind HAK.
We �rst discuss our �ndings on synthetic graphs. HAK performs
fairly well for Gn,p , for instance with the BFS crawl strategy with
50% block fraction, we record an absolute error of 0.02 (actual: 0.24,
estimated: 0.26) for rank correlation of top 30% vertices. The little
ranking deviations in ScaleFree and ForestFire can be attributed
to the small crawls with high �delity (γ ∈ [0.93, 1.0]). As already
discussed, HAK in these cases would always result in a high value,
which also explains HAK adapting to the trends. However, we ob-
serve a larger deviation for BFS crawls in ScaleFree graphs. Here,
HAK underestimates the ranking deviation, which might re�ect the
existence of the worst case (caused by the random vertex removal
in BFS, cf. Sec. 5.1.3), resulting in a similar estimation as the one
described above for very small crawls. However, HAK overesti-
mates the deviation in FFBacklink (see the last 3 plots shown in
Figure 4). We attribute this to the fact that the average impact of
the crawl increases in presence of backlinks (cp. Sec. 3), which is an
overestimation of the actual impact since Forest Fire is nevertheless
the dominant topology in this graph. For our measure, a higher
average impact corresponds to higher impact on the crawl from the
ghost vertices (in our constructed target graph, cp. Sec. 4), leading
to increased number of discordant pairs. The uniformly random
blocking strategy in the BFS crawls on the other hand might break
such backlinks, which lead to a more realistic ranking deviation as
well as a better estimation of this deviation by HAK (actual: 0.29,
estimated: 0.35).
We report more promising results in case of real-world graphs (s.
Fig. 3). For instance, for the UK graph we report an almost precise
estimation (actual: 0.58, estimated: 0.61). The observed trend in UK
is more similar to that seen in toGn,p and FFBacklinks, which might
also suggest existence of more backlinks in this graph, leading to
large cycles (cp. Fig. 2). In contrast, the deviation in Friendster is less
strong and slightly overestimated by HAK (actual: 0.76, estimated:
0.66) similar to ForestFire. We remark here that ForestFire also
aims to model social networks and we believe that the similarity of
these trends might be caused by the scarcity of backlinks in these
graphs. We also note that our estimates re�ect more closely the
ranking deviations among the top PageRank vertices (in either
of the compared rankings, cp. Sec. 5.1.4), which we believe to be
more interesting for most practical purposes than deviations in less
important vertices or the entire graph.
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Figure 4: Ranking deviations measured and estimated with di�erent synthetic graphs and crawls for di�erent fractions of

uncrawled vertices (rows) as well as di�erent crawling strategies (columns).

In summary, the e�ectiveness of HAK is dependent on the fact
that how well we estimate the target graph using properties like
�delity. Moreover, we would require big enough crawls to allow
for a representative estimation3 of the target graph. We believe
that a more sophisticated use of the �delity and impact of vertices
in crawls, for instance using their distributions instead of simple
average, will allow us to estimate the target graph and hence the
ranking deviation more accurately. In addition, we plan to investi-
gate more properties of the crawled graph, which can be used to
predict the corresponding target graph. As our �nal goal, we will
like to extend HAK as a black-box of measures, from which a suit-
able measure can be chosen in order to estimate ranking deviations
in some particular crawl.

6 CONCLUSION

In this paper, we focused on the problem of PageRank deviations
in Web graphs, typically caused by incomplete crawling. We es-
tablished that deviations in ranking indeed do occur and can be
drastic, as shown in our GOV graph where the correlation among

3We do not want to give recommendations for a minimal size as this is dependent on
the target graph and requires some knowledge about it, which should anyway exist
when working with a crawl.

the rankings is only 0.55, measured by Kendall’s Tau. To this ef-
fect, we proposed the HAK measure, which can reliably estimate
such deviations purely on the crawl without any knowledge of the
original graph.
Our results suggest that incomplete Web graphs behave surprisingly
similar to random graph models and quite di�erent from other
generative Web models, such as Forest Fire, in terms of PageRank
deviations. Thus, this study on incompleteness in Web graphs could
be important in studying the structure of the Web as well. For future
work, it would be interesting to check if Web graphs are indeed
composed of local random structures. Further, from the insights
on the e�ect of backlinks in this work, we intend to look into
other representative formal Web models. Finally, we would like
to investigate the applicability of our measure to determine the
con�dence of results produced by other algorithms on incomplete
graphs, such as random walk algorithms similar to PageRank.

A APPENDIX

A.1 Crawling Strategies

• BFS : The breadth-�rst search (BFS) starts from a set of seed ver-
tices and runs until all vertices are reached. A number of vertices
according to the block fraction were chosen uniformly at random
and blocked/discarded before the BFS, simulating vertices that



cannot be crawled, e.g., due to robots.txt, slow response times,
etc.

• BfsRnd : Instead of blocking vertices from the beginning we
determine a number of vertices to pursue at each vertex, chosen
uniformly at random from its outgoing edges. Additionally, we
remove a random number of vertices according to the block
fraction from the seed set and run the BFS until the speci�ed
desired fraction is discovered.

• BfsGeo : Similar to BfsRnd, but the number of edges to follow
was geometrically distributed with parameter p = 0.3, resem-
bling Forrest Fire Sampling [26].

• SEC : In this Sample Edge Count stategy [30], at each step the
number of edges from the crawled vertices to all remaining ver-
tices are tracked and those with incoming edges are prioritized.

A.2 Seed Selection

We found out that the most realistic seed selection strategy is to pick
the most important vertices as seeds. This is also the case for real
crawls as these correspond to more well-known pages. To identify
such pages in our target graphs, we �rst ran PageRank on them
and constructed the seed set from the top 1%. This allowed us to
reduce the size of the large real-world graphs by pre-computing the
actual target graphs, consisting only of vertices that are reachable
from the seeds (s. Table 1, Vtarget and Etarget). Interestingly, for
the GOV and DE graphs, the size di�erence of the target graphs
compared to the originally provided graphs is huge, which con�rms
common characteristics of these Web archive graphs, i.e., they are
not constructed in one crawl, leading to a fairly large number of
unimportant vertices (with no in-edges) that were discovered from
crawls outside target graphs. The UK and Friendster graphs on the
other hand remained at almost the same size, suggesting that they
have already been created that way in the �rst place, which proves
our seed selection strategy actually realistic.

REFERENCES

[1] Scott G. Ainsworth, Ahmed Alsum, Hany SalahEldeen, Michele C. Weigle, and
Michael L. Nelson. 2011. How much of the web is archived?. In Proceeding of the
11th annual international ACM/IEEE joint conference on Digital libraries - JCDL
'11. ACM Press. DOI:https://doi.org/10.1145/1998076.1998100

[2] Sawood Alam, Michael L. Nelson, Herbert Van de Sompel, and David S. H.
Rosenthal. 2016. Web Archive Pro�ling Through Fulltext Search. In Research
and Advanced Technology for Digital Libraries. Springer International Publishing,
121–132. DOI:https://doi.org/10.1007/978-3-319-43997-6_10

[3] Ahmed Alsum, Michele C. Weigle, Michael L. Nelson, and Herbert Van de Sompel.
2013. Pro�ling Web Archive Coverage for Top-Level Domain and Content
Language. In Research and Advanced Technology for Digital Libraries. 60–71. DOI:
https://doi.org/10.1007/978-3-642-40501-3_7

[4] Archiveteam. 2011. Friendster Social Network Dataset: Friends. (2011). https://
archive.org/details/friendster-dataset-201107 published under CC0 1.0 Universal.

[5] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering for Compress-
ing Social Networks. In Proceedings of the 20th international conference on World
WideWeb, Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravin-
dra, Elisa Bertino, and Ravi Kumar (Eds.). ACM Press, 587–596.

[6] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2004. Do your worst to
make the best: Paradoxical e�ects in pagerank incremental computations. In
International Workshop on Algorithms and Models for the Web-Graph. Springer,
168–180.

[7] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601. http://law.di.
unimi.it/datasets.php

[8] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. 2003. Di-
rected Scale-free Graphs. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’03).

[9] Miguel Costa, Daniel Gomes, and Mário J. Silva. 2016. The evolution of web
archiving. International Journal on Digital Libraries 18, 3 (may 2016), 191–205.

DOI:https://doi.org/10.1007/s00799-016-0171-9
[10] Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. 2014. On estimating the

average degree. In Proceedings of the 23rd international conference on World wide
web. ACM, 795–806.

[11] Paul Erdős and Alfréd Rényi. 1959. On random graphs. Publicationes Mathemati-
cae Debrecen 6 (1959), 290–297.

[12] E. N. Gilbert. 1959. Random Graphs. Ann. Math. Statist. 30, 4 (12 1959), 1141–1144.
[13] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. 2011.

Practical recommendations on crawling online social networks. IEEE Journal on
Selected Areas in Communications 29, 9 (2011), 1872–1892.

[14] Daniel Gomes, Sérgio Freitas, and Mário J. Silva. 2006. Design and Selection
Criteria for a National Web Archive. In Research and Advanced Technology for
Digital Libraries. 196–207. DOI:https://doi.org/10.1007/11863878_17

[15] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. 2004. Combating web
spam with trustrank. In Proceedings of the Thirtieth international conference on
Very large data bases-Volume 30. VLDB Endowment, 576–587.

[16] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008).

[17] Stephen J Hardiman and Liran Katzir. 2013. Estimating clustering coe�cients and
size of social networks via random walk. In Proceedings of the 22nd international
conference on World Wide Web. ACM, 539–550.

[18] Taher H Haveliwala. 2002. Topic-sensitive pagerank. In Proceedings of the 11th
international conference on World Wide Web. ACM, 517–526.

[19] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. 2016. The Dawn of
today’s popular domains: A study of the archived German Web over 18 years. In
Digital Libraries (JCDL), 2016 IEEE/ACM Joint Conference on. IEEE, 73–82.

[20] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. 2017. Exploring Web
Archives through Temporal Anchor Texts. In Proceedings of the 2017 ACM on
Web Science Conference - WebSci '17. ACM Press, Troy, New York, USA. DOI:
https://doi.org/10.1145/3091478.3091500

[21] Christian Hübler, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahra-
mani. 2008. Metropolis algorithms for representative subgraph sampling. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 283–292.

[22] Hugo C. Huurdeman, Anat Ben-David, Jaap Kamps, Thaer Samar, and Arjen P. de
Vries. 2014. Finding pages on the unarchived Web. In IEEE/ACM Joint Conference
on Digital Libraries. IEEE. DOI:https://doi.org/10.1109/jcdl.2014.6970188

[23] Liran Katzir, Edo Liberty, and Oren Somekh. 2011. Estimating sizes of social
networks via biased sampling. In Proceedings of the 20th international conference
on World wide web. ACM, 597–606.

[24] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[25] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604–632.

[26] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 631–636.

[27] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:
Densi�cation and Shrinking Diameters. ACM Trans. Knowl. Discov. Data 1, 1,
Article 2 (March 2007).

[28] Rong-Hua Li, Je�rey Xu Yu, Lu Qin, Rui Mao, and Tan Jin. 2015. On random walk
based graph sampling. In Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. IEEE, 927–938.

[29] Arun S Maiya and Tanya Y Berger-Wolf. 2011. Bene�ts of bias: Towards better
characterization of network sampling. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 105–113.

[30] Arun S. Maiya and Tanya Y. Berger-Wolf. 2011. Bene�ts of Bias: Towards Better
Characterization of Network Sampling. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’11).

[31] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. 2001. Link Analysis,
Eigenvectors and Stability. In Proceedings of the 17th International Joint Conference
on Arti�cial Intelligence - Volume 2 (IJCAI’01). 903–910.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[33] The Internet Archive. 1996-2017. The Internet Archive. (1996-2017). http:
//archive.org

[34] Andrea Vattani, Deepayan Chakrabarti, and Maxim Gurevich. 2011. Preserving
personalized pagerank in subgraphs. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 793–800.

[35] Tianyi Wang, Yang Chen, Zengbin Zhang, Peng Sun, Beixing Deng, and Xing Li.
2010. Unbiased sampling in directed social graph. In ACM SIGCOMM Computer
Communication Review, Vol. 40. ACM, 401–402.

[36] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. 2013.
GraphX: A Resilient Distributed Graph System on Spark. In First International
Workshop on Graph Data Management Experiences and Systems (GRADES ’13).

[37] Zhuojie Zhou, Nan Zhang, Zhiguo Gong, and Gautam Das. 2016. Faster random
walks by rewiring online social networks on-the-�y. ACM Transactions on
Database Systems (TODS) 40, 4 (2016), 26.

https://doi.org/10.1145/1998076.1998100
https://doi.org/10.1007/978-3-319-43997-6_10
https://doi.org/10.1007/978-3-642-40501-3_7
https://archive.org/details/friendster-dataset-201107
https://archive.org/details/friendster-dataset-201107
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://doi.org/10.1007/s00799-016-0171-9
https://doi.org/10.1007/11863878_17
https://doi.org/10.1145/3091478.3091500
https://doi.org/10.1109/jcdl.2014.6970188
http://archive.org
http://archive.org

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem
	4 The HAK Measure
	4.1 Estimating the Target Graph
	4.2 PageRank and Impacts
	4.3 Estimating the Impact of Ghost Vertices

	5 Experiments
	5.1 Experimental Setup
	5.2 Crawls and Ranking Deviations in Graphs
	5.3 Effectiveness of HAK

	6 Conclusion
	A Appendix
	A.1 Crawling Strategies
	A.2 Seed Selection

	References

