
CONCEPTS AND TOOLS FOR THE EFFECTIVE

AND EFFICIENT USE OF WEB ARCHIVES

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

DOKTOR DER NATURWISSENSCHAFTEN

Dr. rer. nat.

genehmigte Dissertation
von

Helge Holzmann, M.Sc.

geboren am 4. Mai 1986, in Celle, Deutschland

Hannover, Deutschland, 4. Februar 2019



Referent: Prof. Dr. techn. Wolfgang Nejdl
Korreferent: Prof. dr. ir. Arjen P. de Vries
Tag der Promotion: 04.02.2019



ABSTRACT

Web archives constitute valuable sources for researchers in various disciplines. How-
ever, their sheer size, the typically broad scope and their temporal dimension make them
difficult to work with. We have identified three views to access and explore Web archives
from different perspectives: user-, data- and graph-centric.

The natural way to look at the information in a Web archive is through a Web
browser, just like the live Web is consumed. This is what we consider the user-centric
view. The most commonly used tool to access a Web archive this way is the Wayback
Machine, the Internet Archive’s replay tool to render archived webpages. To facilitate the
discovery of a page if the URL or timestamp of interest is unknown, we propose effective
approaches to search Web archives by keyword with a temporal dimension through social
bookmarks and labeled hyperlinks. Another way for users to find and access archived
pages is past information on the current Web that is linked to the corresponding evidence
in a Web archive. A presented tool for this purpose ensures coherent archived states of
webpages related to a common object as rich temporal representations to be referenced
and shared.

Besides accessing a Web archive by closely reading individual pages like users do,
distant reading methods enable analyzing archival collections at scale. This data-centric
view enables analysis of the Web and its dynamics itself as well as the contents of archived
pages. We address both angles: 1. by presenting a retrospective analysis of crawl meta-
data on the size, age and growth of a Web dataset, 2. by proposing a programming
framework for efficiently processing archival collections. ArchiveSpark operates on stan-
dard formats to build research corpora from Web archives and facilitates the process of
filtering as well as data extraction and derivation at scale.

The third perspective is what we call the graph-centric view. Here, websites, pages
or extracted facts are considered nodes in a graph. Links among pages or the extracted
information are represented by edges in the graph. This structural perspective conveys an
overview of the holdings and connections between contained resources and information.
While this enables novel concepts of exploring Web archives, it also raises new challenges.

We present the latest achievements in all three views as well as synergies among
them. For instance, important websites that can be identified from the graph-centric
perspective may be of particular interest for the users of a Web archive. The data-centric
view is used in both ways, it benefits from the graph-centric view to guide data studies
but is also employed to prepare the data for the other views, like extracting graphs from
archival collections. Finally, by considering the three views as different zoom levels of
the same Web archive, they can be integrated in a holistic data analysis pipeline.
Keywords: Web archives, temporal search, distributed data processing, Web analysis



ZUSAMMENFASSUNG

Web-Archive stellen wertvolle Datenquellen für Forscher unterschiedlicher Disziplinen
dar. Ihre schiere Größe, die typischerweise große Bandbreite an Daten sowie ihre zeitliche
Dimension führen jedoch dazu, dass es nicht einfach ist, mit ihnen zu arbeiten. Um dies
näher zu untersuchen, haben wir drei Sichtweisen auf den Zugriff und die Exploration
von Web-Archiven identifiziert: Nutzer-, Daten- und Graphen-zentriert.

Ähnlich wie das Live-Web, ist der natürliche Weg die Informationen in einem Web-
Archiv zu betrachten, durch einen Web-Browser. In dieser Nutzer-zentrierten Sicht, stellt
die Wayback Machine des Internet Archives das bekannteste Tool zur Anzeige archivierter
Webseiten dar. Um dabei das Auffinden solcher Seiten zu unterstützen, zu denen en-
tweder die URL oder der gewünschte Zeitpunkt nicht bekannt sind, stellen wir einen
effektiven Ansatz vor, um Web-Archive basierend auf sozialen Lesezeichen oder Hyper-
links zeitlich nach Schlüsselwörtern zu durchsuchen. Eine Alternative dazu sind zeitliche
Informationen im Live-Web, die mit entsprechenden Belegen in einem Web-Archiv ver-
linkt sind. Unser dafür präsentierter Ansatz stellt sicher, dass zusammengehörige Seiten
gemeinsam archiviert werden und somit als zeitliche Abbildung der durch sie repräsen-
tierten Objekte dienen.

Neben der individuellen Betrachtung einzelner Webseiten durch den Nutzer, er-
möglicht das sogenannte Distant-Reading Analysen im großen Stil. Die Daten-zentrierte
Sicht betrachtet dabei sowohl das Web selbst, mit seinen dynamischen Eigenschaften, als
auch die Inhalte der archivierten Seiten. Wir beschäftigen uns hierbei mit beiden Blick-
winkeln: 1. indem wir Crawl-Metadaten in Bezug auf die Größe, das Alter sowie das
Wachstum einer Webkollektion untersuchen, 2. indem wir ein Programmier-Framework
zur effizienten Datenverarbeitung von Archiven vorstellen. ArchiveSpark arbeitet dabei
ausschließlich mit Standardformaten, woraus Forschungskorpora durch die Anwendung
von Filtern und die Extraktion von Daten erstellt werden können.

Aus der dritten Perspektive, der Graphen-zentrierte Sicht, werden Webseiten oder en-
thaltene Informationen als Knoten in einem Graphen betrachtet. Links oder Verbindun-
gen zwischen diesen Daten werden durch Kanten in dem Graphen repräsentiert. Diese
strukturelle Perspektive vermittelt dadurch einen Überblick über die im Archiv enthalte-
nen Elemente und deren Beziehungen. Diese Betrachtung der Daten ermöglicht neuartige
Konzepte zur Erkundung von Web-Archiven. Gleichzeitig wirft sie jedoch auch neue Fra-
gen auf.

Neben den neuesten Ergebnissen aus allen drei Sichtweisen präsentieren wir auch
die Synergien zwischen diesen. Beispielsweise hilft die Graphen-zentrierte Sicht dabei,
wichtige Webseiten zu identifizieren, die für Nutzer von besonderem Interesse sein kön-
nen. Die Daten-zentrierte Sicht profitiert einerseits ebenfalls von der Graphen-zentrierte
Sicht, um Webseiten mit hoher Relevanz für eine Datenanalyse ausfindig zu machen,
andererseits wird sie genutzt, um die benötigten Daten für die beiden anderen Per-
spektiven aufzubereiten, zum Beispiel zur Konstruktion eines Graphen basierend auf
den archivierten Daten. Weiterhin können die drei Sichtweisen als unterschiedliche
Zoomstufen auf ein und dieselben Daten angesehen werden, was sich vor allem bei
Datenanalyse-Prozessen als sehr sinnvoll erwiesen hat.
Schlagwörter: Web-Archive, zeitliche Suche, verteilte Datenverarbeitung, Web-Analyse
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FOREWORD

Since early 2014, beginning with the inception of the EU project
ALEXANDRIA1, my research focus has been on the access and use of Web
archives, which shaped and coined the entire course of my PhD studies. The
work in this project involved extensive big data processing, data analysis as
well as software development or tool building and required deep knowledge
of related topics, such as information retrieval and data management.

Just like futurist and visionary Kevin Kelly (see quote after the fore-
word), I am convinced that in the future, the Web of the past will gain in
importance for various areas and even integrate closer with the live Web.
Through this work, I developed a strong interest in Web archiving and the
archived Web as valuable dataset for scientists, but also for regular users to
get a glimpse of the past.

Therefore, I have studied this interesting topic with different target
groups in mind that have different interests and different perspectives on
the use of Web archives. Based on these, the thesis has been structured into
three views, each focusing on another aspect:

• the user-centric view in Chapter 2 deals with the needs of regular
users and tools to make Web archives more accessible to them

• the concepts and tools presented in the data-centric view in Chapter 3
address data scientists as users, who want to study the archived Web

• the model of a graph as a way to approach Web archives in the graph-
centric view in Chapter 4 is primarily of interest for researchers, but
has also been shown to be useful in combination with the other views

This conception of different perspectives on Web archives was presented at
the Web Archiving Week 2017 2 and published in the following paper, which
provides the basis for my introduction in Chapter 1:

[1] Helge Holzmann and Thomas Risse. Accessing Web Archives from
Different Perspectives with Potential Synergies. In Researchers, Practition-
ers and Their Use of the Archived Web, London, UK, jun 2017. School of
Advanced Study, University of London. doi: 10.14296/resaw.0001. at the
2nd International Conference on Web Archives / Web Archiving Week (RE-
SAW/IIPC)

The core contributions of this thesis in the individual chapters are pub-
lished in the following articles:

1http://alexandria-project.eu
2http://netpreserve.org/wac2017

http://alexandria-project.eu
http://netpreserve.org/wac2017
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• The contributions inChapter 2, which deals with the user-centric use
of Web archives (Browsing the Web of the Past) are published in:

– [2] Helge Holzmann and Avishek Anand. Tempas: Temporal
Archive Search Based on Tags. In Proceedings of the 25th In-
ternational Conference Companion on World Wide Web - WWW
'16 Companion. ACM Press, 2016. doi: 10.1145/2872518.2890555

– [3] Helge Holzmann, Mila Runnwerth, and Wolfram Sperber.
Linking Mathematical Software in Web Archives. In Mathemati-
cal Software – ICMS 2016, pages 419–422. Springer International
Publishing, 2016. doi: 10.1007/978-3-319-42432-3_52

– [4] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. On the
Applicability of Delicious for Temporal Search on Web Archives.
In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval - SIGIR
'16, Pisa, Italy, 2016. ACM Press. doi: 10.1145/2911451.2914724

– [5]∗ Helge Holzmann, Wolfram Sperber, and Mila Runnwerth.
Archiving Software Surrogates on the Web for Future Reference.
In Research and Advanced Technology for Digital Libraries, 20th
International Conference on Theory and Practice of Digital Li-
braries, TPDL 2016, Hannover, Germany, Hannover, Germany,
2016. doi: 10.1007/978-3-319-43997-6_17

– [6] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. Ex-
ploring Web Archives through Temporal Anchor Texts. In
Proceedings of the 2017 ACM on Web Science Conference -
WebSci '17, Troy, New York, USA, 2017. ACM Press. doi:
10.1145/3091478.3091500

– [7] Helge Holzmann and Mila Runnwerth. Micro Archives as Rich
Digital Object Representations. In Proceedings of the 10th ACM
Conference on Web Science - WebSci '18, Amsterdam, Nether-
lands, 2018. ACM Press. doi: 10.1145/3201064.3201110

• The contributions inChapter 3, which deals with the data-centric use
of Web archives (Analyzing Archival Collections) are published
in:

– [8] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. The
Dawn of Today’s Popular Domains - A Study of the Archived
German Web Over 18 Years. In Proceedings of the 16th
ACM/IEEE-CS Joint Conference on Digital Libraries - JCDL
'16, pages 73–82, Newark, New Jersey, USA, 2016. IEEE, ACM
Press. doi: 10.1145/2910896.2910901

– [9]∗ Helge Holzmann, Vinay Goel, and Avishek Anand. Archives-
park: Efficient Web Archive Access, Extraction and Derivation.
In Proceedings of the 16th ACM/IEEE-CS Joint Conference on
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Digital Libraries - JCDL '16, pages 83–92, New York, NY, USA,
2016. ACM. doi: 10.1145/2910896.2910902

– [10] Helge Holzmann, Vinay Goel, and Emily Novak Gustai-
nis. Universal Distant Reading through Metadata Proxies with
Archivespark. In 2017 IEEE International Conference on Big
Data (Big Data), Boston, MA, USA, dec 2017. IEEE. doi:
10.1109/bigdata.2017.8257958

• The contributions in Chapter 4, which deals with the graph-centric
use of Web archives (Exploring Web Archives Through Graphs)
are published in:

– [6] Helge Holzmann, Wolfgang Nejdl, and Avishek Anand. Ex-
ploring Web Archives through Temporal Anchor Texts. In
Proceedings of the 2017 ACM on Web Science Conference -
WebSci '17, Troy, New York, USA, 2017. ACM Press. doi:
10.1145/3091478.3091500

– [11]∗ Pavlos Fafalios, Helge Holzmann, Vaibhav Kasturia, and
Wolfgang Nejdl. Building and Querying Semantic Layers for Web
Archives. In Proceedings of the 17th ACM/IEEE-CS Joint Con-
ference on Digital Libraries - JCDL '17. IEEE, jun 2017. doi:
10.1109/jcdl.2017.7991555

– [12] Pavlos Fafalios, Helge Holzmann, Vaibhav Kasturia, and
Wolfgang Nejdl. Building and querying semantic layers for
web archives (extended version). International Journal on Dig-
ital Libraries, Jul 2018. doi: 10.1007/s00799-018-0251-0. URL
https://doi.org/10.1007/s00799-018-0251-0

– [13] Helge Holzmann, Avishek Anand, and Megha Khosla. What
the HAK? Estimating Ranking Deviations in Incomplete Graphs.
In 14th International Workshop on Mining and Learning with
Graphs (MLG) - Co-located with 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(KDD), London, UK, 2018

– [14] Helge Holzmann, Avishek Anand, and Megha Khosla. Delu-
sive pagerank in incomplete graphs. In Complex Networks and
Their Applications VII. Springer International Publishing, 2019.
ISBN 978-3-030-05411-3

Before ALEXANDRIA, my studies were focused around another tempo-
ral topic that is closely related to the work on Web archives, namely the
evolution of named entities, as part of the EU project ARCOMEM1. The con-
tributions on this as well as a few other related works that I was involved
in during the course of my PhD are published in the following articles:

∗This paper was nominated for the Best Paper award or acknowledged as one of the
best papers of the conference.

1http://www.arcomem.eu

http://www.arcomem.eu
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• [15] Nina Tahmasebi, Gerhard Gossen, Nattiya Kanhabua, Helge
Holzmann, and Thomas Risse. Neer: An Unsupervised Method for
Named Entity Evolution Recognition. In Proceedings of the 24th Inter-
national Conference on Computational Linguistics (COLING 2012),
pages 2553–2568, dec 2012

• [16] Helge Holzmann, Gerhard Gossen, and Nina Tahmasebi. Fokas:
Formerly Known As - a Search Engine Incorporating Named Entity
Evolution. In Proceedings of the 24th International Conference on
Computational Linguistics: Demonstration Papers (COLING 2012),
pages 215–222, dec 2012

• [17] Helge Holzmann, Nina Tahmasebi, and Thomas Risse.
BlogNEER: Applying Named Entity Evolution Recognition on the
Blogosphere. In 3rd International Workshop on Semantic Digital
Archives (SDA) - Co-located with 17th International Conference on
Theory and Practice of Digital Libraries (TPDL), volume 1091, pages
28–39, Valletta, Malta, 2013

• [18] Helge Holzmann and Thomas Risse. Named Entity Evolution
Analysis on Wikipedia. In Proceedings of the 2014 ACM Conference
on Web Science - WebSci '14. ACM Press, 2014. doi: 10.1145/2615569.
2615639

• [19] Elena Demidova, Nicola Barbieri, Stefan Dietze, Adam Funk,
Helge Holzmann, Diana Maynard, Nikolaos Papailiou, Wim Peters,
Thomas Risse, and Dimitris Spiliotopoulos. Analysing and Enriching
Focused Semantic Web Archives for Parliament Applications. Future
Internet, 6(3):433–456, jul 2014. doi: 10.3390/fi6030433

• [20] Helge Holzmann and Thomas Risse. Extraction of Evolution De-
scriptions from the Web. In IEEE/ACM Joint Conference on Digital
Libraries, pages 413–414, London, UK, sep 2014. IEEE Press, IEEE.
doi: 10.1109/jcdl.2014.6970201

• [21] Helge Holzmann and Thomas Risse. Insights into Entity Name
Evolution on Wikipedia. In Web Information Systems Engineering
– WISE 2014, pages 47–61, Thessaloniki, Greece, oct 2014. Springer
International Publishing. doi: 10.1007/978-3-319-11746-1_4

• [22] Helge Holzmann, Nina Tahmasebi, and Thomas Risse. Named En-
tity Evolution Recognition on the Blogosphere. International Journal
on Digital Libraries, 15(2-4):209–235, apr 2015. doi: 10.1007/s00799-
014-0135-x

• [23] Tarcisio Souza, Elena Demidova, Thomas Risse, Helge Holzmann,
Gerhard Gossen, and Julian Szymanski. Semantic URL Analytics
to Support Efficient Annotation of Large Scale Web Archives. In
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Semantic Keyword-based Search on Structured Data Sources, pages
153–166. Springer International Publishing, 2015. doi: 10.1007/978-3-
319-27932-9_14

• [24] Anett Hoppe, Jascha Hagen, Helge Holzmann, Günter Kniesel,
and Ralph Ewerth. An Analytics Tool for Exploring Scientific Soft-
ware and Related Publications. In Research and Advanced Technology
for Digital Libraries, 22nd International Conference on Theory and
Practice of Digital Libraries, TPDL 2018, Porto, Portugal, 2018. doi:
10.1007/978-3-030-00066-0_27



It will also expand in time. Today’s Web is remarkably
ignorant of the past. [...] Viewing an earlier version of
a typical website is not easy, but in 30 years we’ll have
time sliders enabling us to see any past version. Just
as your phone’s navigation directions through a city are
improved by including previous days, weeks, and months
of traffic patterns, so the Web of 2050 will be informed
by the context of the past...

from the book The Inevitable:
Understanding the 12 Technological

Forces That Will Shape Our Future (2017)

by KEVIN KELLY
(founding executive editor of the Wired magazine)
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1
Introduction

A significant portion of the record of our society either exists exclusively on the
Web today or has been moving to the Web. Consequently, there has been a surge of
collection, curation and preservation efforts to archive the live and ephemeral Web.
Web archiving initiatives such as the Internet Archive1 and the Internet Memory
Foundation2 have been involved in periodically archiving websites for over 20 years
with collection sizes amounting to several hundreds of terabytes. Additionally, a
large number of libraries, universities, and cultural heritage organizations have Web
archiving programs [25], with a 2011 survey reporting 42 different Web archiving
initiatives across 26 countries [26].

By offering a unique possibility to look at past events and temporal evolutions,
longitudinal collections present many opportunities for various kinds of historical
analyses [27], cultural analyses and Culturomics [28], as well as analytics for com-
putational journalism [29]. Hence, with greater availability of Web archives and
increasing recognition of their importance, a growing number of historians, social
and political scientists, and researchers from other disciplines see them as rich
resources for their work [30].

However, as Web archives grow in scope and size, they in itself also present
unique challenges in terms of usage, access and analysis that require novel, effective
and efficient concepts and tools for researchers as well as for the average user. In the
following, we tackle these from three different perspectives: the user-centric view,
the data-centric view and the graph-centric view. One natural way of conceiving
these views is as different zoom levels to look at the same archival collection, as
illustrated in Figure 1.1, starting with the user-centric view that targets single
documents to be examined by regular users. By zooming out to the data-centric
view, one can scale the examination up to the whole archival collection or subsets
of it. In contrast, the broadest zoom level, the data view does not focus on the
individual documents but deals with the structures that span an archive.

Another way of conceiving the relations among the views is by considering their
levels of abstraction. While the data-centric view is rather low level, closest to the

1http://www.archive.org
2http://www.internetmemory.org

1
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2 Chapter 1 Introduction

Figure 1.1. The three views on Web archives, representing different zoom
levels to look at the archived data.

data as well as computational resources, the graph- as well as user-centric views
can be considered more abstract. With the graph-centric view being a conceptual
layer, not dealing with the technical details of data access and processing but
the underlying conceptional models and relations, the user-centric view does not
deal with such low-level issues at all but focuses on the users who interact with
the archive without any particular skills required. This understanding leads to
another distinguishable factor of the three views, namely the types of challenges
they cause. While we care about usability as well as exploration in the user-centric
view, technical and fundamental questions are raised to a much bigger extent by
both other views. However, the difference among them becomes clear when we
consider the problem that we touch upon in the very end in Section 4.2: the
incompleteness of Web archives. From the data-centric view, this problem is not
very obvious as we process the Web archive as given, tackling efficient access to the
data and the analysis of what is in the studied collection. Only by zooming out
and connecting contained concepts, issues like incompleteness are manifested, with
the other side of a relation not being present. Finally, however, all three views are
connected in one way or the other and there exist synergies among them in all the
discussed ways to conceive the presented perspectives, as we will see later.

1.1 Browsing the Web of the Past

The natural way to look at a Web archive is through a Web browser, just like
regular users explore the live Web as well. This is what we consider the user-
centric view, as addressed in Chapter 2: access with a focus on users, their needs,
and without requiring additional infrastructure or knowledge about the underlying
data structures. Currently, the most common way to access a Web archive from a
user’s perspective is the Wayback Machine3, the Internet Archive’s replay tool to
render archived webpages, as well as its open-source counterpart OpenWayback 4,
which is available for most Web archives.

3http://web.archive.org
4https://github.com/iipc/openwayback

http://web.archive.org
https://github.com/iipc/openwayback
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These tools are used by normal users who wants to look up an old webpage of the
past as well as scholarly users who closely read individual webpages to understand
their content and the context rather than or prior to zooming out and analyzing
collections in a data analysis or distant reading fashion [31]. Similar to the live
Web, where users either directly enter the URL of a webpage in a browser, click
a link, or utilize search engines to find the desired page, the use of Web archives
from a user’s perspective can be distinguished into direct access and search as well.

User Access to Web archives

Direct access to an archived webpage through the Wayback Machine requires the
user to enter a target URL first, before selecting the desired version of the cor-
responding webpage from a calendar view that gives an overview of all available
snapshots of that URL. As URLs can be cumbersome, users on the live Web often
prefer search engines over remembering and typing URLs manually. The Internet
Archive’s Wayback Machine provides search only in a very rudimentary way [32].
While their Site Search feature is a great improvement over plain URL lookups,
their approach is pretty limited as it neither surfaces deep URLs to a specific page
under a site nor supports temporal search, i.e., users cannot specify a time interval
with their queries.

An alternative to search, if a URL is not known, is to follow hyperlinks from
other pages. With Web archives being temporal collections, such a link needs to
carry a timestamp in addition to the URL. Within the Wayback Machine, links are
automatically temporal with timestamps as close as possible to the page or capture
that is currently viewed. However, it is also possible to link from the outside of a
Web archive, i.e., the live Web, to an archived page. In this case the timestamp
needs to be set explicitly.

One way to do this is by manually pointing to a particular capture in a Web
archive, like done in news articles about the case of Joy Reid, who claimed her blog
was hacked and articles have been manipulated5. Another approach to form such
temporal hyperlinks is by incorporating time information that can be associated
to the link. We recently investigated this for the case of software that is cited
or mentioned in scientific publications. We found that websites corresponding
to software often nicely describe and document the referenced application and
can be considered surrogates of the software’s version that was referred to in an
article [3, 5]. In this case, the publication date is a good indicator, or at least
a close estimate, of the target time for linking the publication and mentioned
software. While this example is very domain-specific to software, the same idea
can be applied to other scenarios as well, such as preserving the evolution of people
by archiving their blogs and social network profiles [33, 34, 35]. Another example
is the preservation of Web citations, like on Wikipedia, to provide access to cited
page at the time when it was cited6.

Before we turn our attention to these direct access methods in Section 2.2
5http://ws-dl.blogspot.de/2018/04/2018-04-24-why-we-need-multiple-web.html
6https://en.wikipedia.org/wiki/Help:Using_the_Wayback_Machine

http://ws-dl.blogspot.de/2018/04/2018-04-24-why-we-need-multiple-web.html
https://en.wikipedia.org/wiki/Help:Using_the_Wayback_Machine
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though, where we propose Micro Archives as rich digital object representations
that can be referenced and linked [7], we will focus on Web archive search in detail.

Web Archive Search

Web archives can provide access to historical information that is absent on the cur-
rent Web, like previous companies, products, events, entities etc. However, even
after a long time of existence, Web archives are still lacking search capabilities
that make them truly accessible and usable as temporal resources. Web archive
search can be considered a special case of temporal information retrieval (temporal
IR) [36]. This important subfield of IR has the goal to improve search effective-
ness by exploiting temporal information in documents and queries [37, 38]. The
temporal dimension leads to new challenges in query understanding [39], retrieval
models [40, 41] as well as temporal indexing [42, 43]. However, most temporal
indexing approaches treat documents as static texts with a certain validity, which
does not account for the dynamics in Web archives where webpages change over
time and hence, their relevance to a query may change over time. Furthermore,
while information needs in IR are traditionally classified according to the taxonomy
introduced by Broder [44], user intents are different for Web archives as studied by
Costa and Silva [45]. In contrast to the majority of queries on the live Web being
informational, queries in Web archives are predominantly navigational, because
users often look for specific resources in a Web archive under a temporal aspect
rather than general information that is in commonly available on the current Web
as well. Costa et al. [46] presented a survey of existing Web archive search archi-
tectures and Hockx-Yu [30] identified 15 Web archives that feature full-text search
capabilities. With the incorporation of live Web search engines, Kanhabua et al.
[47] demonstrate how to search in a Web archive without indexing it.

In Section 2.1, we present a system with the goal to provide temporal archive
search: given a keyword query together with a time interval we want to find the
most authoritative pages, e.g., “what were the most representative webpages of
Barack Obama before he became president in 2005?”. This would bring up Obama’s
senator website rather than his today’s website and social media accounts. Such
temporal semantics can often not be derived from the webpages under considera-
tion and require external indicators. In our first version of Tempas, we incorporated
tags attached to URLs on the social bookmarking platform Delicious as temporal
cues [2]. Without evaluating the precision of the ranking, which was based on the
frequency of a tag used with a URL, we show that this approach results in a good
(temporal) recall with respect to query logs from AOL and MSN [4]. However,
since Delicious is a closed system, available data is limited and our dataset only
ranges from 2003 to 2011. Also, we found that it shows a strong bias towards
certain topics, like technology. For these reasons, we switched to hyperlinks in the
second version of Tempas. Using a graph-based query model, Tempas v2 exploits
the number of websites and corresponding anchor texts linking to a URL in a given
time interval. Its temporally sensitive search for authority pages of entities in Web
archives has been shown to be very effective in multiple scenarios [6].



1.2 Analyzing Archival Collections 5

1.2 Analyzing Archival Collections

In contrast to accessingWeb archives by closely reading pages like users do, archived
contents can also be processed at scale, enabling evolution studies and big data
analyses. In this data-centric view, addressed in Chapter 3, webpages are not
necessarily considered self-contained units with a layout and embeds, but single
resources are rather treated as raw data, such as text or images. A question like
“What persons appear together most frequently in a specific period of time?” is only
one example of what can be analyzed from the archived Web [48]. Typically, these
studies do not require a whole archive though, but only on pages from a specific time
period, certain data types or other facets that can be employed for pre-filtering the
dataset. With ArchiveSpark we have developed a tool for building research corpora
from Web archives that operates on standard formats and facilitates the process
of filtering as well as data extraction and derivation at scale in a very efficient
manner [9].

Web archives are commonly organized in two data formats: WARC files (Web
Archive files) store the actual archived contents, while CDX files (Capture Index)
are comprised of lightweight metadata records. The data-centric view approaches
Web archives from these files, which is how data scientists would typically look at
it. This perspective provides a higher, superior point of view, looking at whole
collections rather than individual records, nicely rendered for a user. However, we
have to deal with much lower data access and processing techniques at this level.

In the following, we distinguish between two perspectives in the data-centric
view: 1. Web archives as the object of study, reflecting the evolution of the Web
and its dynamics, 2. focusing on the contents of webpages to derive insights into
the real world, referred to as Web Science [49].

Web Dynamics Analysis

Web archives that span multiple years constitute a valuable resource to study the
evolution of the Web as well as its dynamics. In previous works on Web dynamics,
suitable datasets had to be crawled first, which is tedious and can only be done for
shorter periods [50, 51, 52, 53, 54]. With access to existing archives, more recent
studies of the Web were conducted retrospectively on available data [55, 56, 57].
However, instead of analyzing the whole archive at once, all of them focus on a
certain subset, such as national domains. Thanks to the Internet Archive we were
provided with their entire subset of German pages over 18 years, i.e., the top-level
domain .de from 1996 to 2013, which enabled us to carry out an analysis of the
dawn of today’s most popular German domains [8], presented in Section 3.1.

In this study, we explore how the age, volume and sizes of popular pages have
evolved over the last decade. We found that most of the popular educational do-
mains like universities have already existed for more than a decade, while domains
relating to shopping and games have emerged steadily. Further, we observe that
the Web is getting older, not in all its parts, but with many domains having a
constant fraction of webpages that are more than five years old and aging further.
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Finally, we see that popular websites have been growing exponentially after their
inception, doubling in volume every two years, and also newborn pages have gotten
bigger over time.

Web Archive Data Processing

Due to the sheer size of Web archives, in the order of multiple terabytes or even
petabytes, distributed computing facilities are needed to process archived Web data
efficiently. Common operations, like selection, filtering, transformation and aggre-
gation, can be performed using the generic MapReduce programming model [58],
as supported by Apache Hadoop7 or Apache Spark 8 [59]. AlSum [60] presents with
ArcContent a tool specifically for Web archives using the distributed database
Cassandra [61]. In this approach, the records of interest are selected by means of
the CDX records and inserted into the database to be queried through a Web ser-
vice. The Archives Unleashed Toolkit (AUT), formerly known as Warcbase, by Lin
et al. [62] follows a similar approach based on HBase, a Hadoop-based distributed
database system, which is an open-source implementation of Google’s Bigtable [63].
While being very efficient for lookups, major drawbacks of these database solutions
are the limited flexibility as well as the additional effort to insert the records, which
is expensive both in terms of time and resources. In a later version, AUT/Warcbase
allows the loading and processing of (WARC) files directly using Apache Spark in
order to avoid the HBase overhead, for which they provide convenience functions
to work with Web archives.

In contrast to that, we present in Section 3.2 a novel data processing approach
for Web archives that exploits CDX metadata records for gains in efficiency while
not having to rely on an external index [9]. ArchiveSpark is a tool for general Web
archive access based on Spark. It supports arbitrary filtering and data derivation
operations on archived data in an easy and efficient way. Starting from the small
and lightweight metadata records it can run basic operations, such as filtering,
grouping and sorting very efficiently, without touching the actual data payloads.
In a step-wise approach the records are enriched with additional information by
applying external modules that can be customized and shared among researches
and tasks, even beyond Web archives [10]. In order to extract or derive information
from archived resources, third-party tools can be integrated. Only at this point,
ArchiveSpark seamlessly integrates the actual data for the records of interest stored
in WARC files. Internally, ArchiveSpark documents the lineage of all derived and
extracted information, which can serve as source for additional filtering and pro-
cessing steps or stored in a convenient output format to be used as research corpus
in further studies. Benchmarks show that ArchiveSpark is faster than competitors,
like AUT/Warcbase and pure Spark in typical use case scenarios when working with
Web archive data.

7https://hadoop.apache.org
8https://spark.apache.org

https://hadoop.apache.org
https://spark.apache.org
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1.3 Exploring Web Archives Through Graphs

The final perspective, besides the user-centric and data-centric views, is addressed
in Chapter 4, referred to as graph-centric view. This view enables the explo-
ration of Web archives from a more structural perspective. In contrast to the views
as discussed before, the focus here is not on content or individual archived records,
but the relations among them. In the context of the Web, the most obvious rela-
tions are hyperlinks that connect webpages by pointing from one page to another.
However, there is more that is less obvious. Looking at hyperlinks from a more
coarse-grained perspective, multiple links can be combined to connections among
hosts, domains or even top-level domains, revealing connections among services, or-
ganizations or the different national regions of the Web. Furthermore, by zooming
out to the graph perspective after processing the archived data from a data-centric
view, even relationships among persons or objects mentioned on the analyzed pages
can be derived [48, 11, 12].

Similarly, the holistic view on archival collections provided by graphs is very
helpful in many tasks and naturally generates synergies with the other views. The
broad zoom level is crucial to get an overview of available records in an archive and
to find the right resources. Hyperlinks among the archived pages can point users
or algorithms in search or data analysis tasks to the desired entry points within the
big and often chaotic Web archive collections. As shown before, we make use of
this with our Web archive search engine Tempas (see Sec. 1.1). The effectiveness of
hyperlinks and attached anchor texts for this task was already shown by previous
works [64, 65, 66, 67].

Data Analysis

The mentioned approaches to explore Web archived through graphs, allow for
queries on a structural level (cf. Fig. 1.1). Once a set of documents that match the
query has been identified, a data-scientist may zoom in to look at the contents from
a data-centric perspective. Quite commonly, such workflows also involve manual
inspections of the records under consideration from a user-centric view. This is
helpful to get an understanding of the data under consideration. Finally, derived
results need to be aggregated and presented to the user in an appropriate form.

Figure 1.2 shows this generic analysis schema that outlines a systematic way to
study Web archives. This schema can be adopted and implemented for different
concrete scenarios. In such a setting, the graph-centric view is utilized to get an
overview and find suitable entry points into the archive. This may initially be
done manually by the user to get a feeling for the available data using a graph-
based search engine like Tempas, but can also be integrated as the first step in a
data processing pipeline to (semi-)automatically select the corpus for further steps.
Next, the selected records can be accessed from a data-centric view at scale, using
a tool like ArchiveSpark (see Sec. 1.2), to extract the desired information, compute
metrics or aggregate statistics. Finally, the results are presented to the user. A
concrete implementation of this pipeline is outlined in Section 4.1 (Sec. 4.1.4),
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Figure 1.2. Combining different views on Web archives for systematic
data analysis.

where we describe the example of analyzing restaurant menus and compare prices
before and after the introduction of the Euro as Europe’s new currency in Germany
in 2001/2002.

Open Challenges

The reason for addressing the graph-centric in the very end, is because it requires
a certain understanding of the other tasks to value its utility. While there are
many synergies between graphs and the challenges discussed before, in which this
structural perspective is very helpful, it also raises new issues and open questions.
Graphs enable completely different kinds of analysis, such as centrality computa-
tions with algorithms like PageRank [68]. However, scientific contributions in this
area specific to Web archives are very limited and results are less mature. Al-
though scientists have looked into graph properties of the Web in general both on
static [69, 70, 71, 72, 73] and evolving graph [74, 75, 76], we found that certain
traits of Web archives lead to new kinds of questions. For instance, as we show
in Section 4.2, the inherent incompleteness of Web archives can affect rankings
produced by graph algorithms. Towards this, we present some early work on es-
timating this effect by proposing a measure based on the partial graphs extracted
from different Web archives [13, 14].



2
User-centric View:

Browsing the Web of the Past

The main difference of Web archive search as opposed to live Web search is its
temporal dimension. This does not only lead to a different search behavior but
also to different intents. Informational or transactional requests, in which the
search engines act more like a question answering system or assistant for the user
rather than a lookup system for webpages, can usually be served from the live Web.
Even if the information or question that the user would like to get answered has
a temporal aspect to it, like a historical event, it is quite likely that information
about this are still documented somewhere on the live Web, e.g., in Wikipedia or
more specialized information sources. Hence, users do not need to employ a Web
archive for this. What they use Web archives for though, is to look up some old
resource, whether it is some concrete URL or simply an abstract concept, such as
a person’s resume or some old news article, possible from a specific news source.
These temporal navigational intents are what Web archive search should be able
to answer.

After we discuss the concept of such a Temporal Archive Search system, Tem-
pas for short, in Section 2.1, we will talk about methods to more directly integrate
Web archives with the current Web as well as more traditional literature. While
direct access is already well provided by the Wayback Machine, which allows for
look-ups as well as temporal links with an explicit timestamp from any (live) web-
page, we will look at less obvious cases, which demand for a temporal link, but
in a more complex, often implicit, manner than pointing to archived version of a
webpage. Such cases include references to inherently temporal objects or temporal
states of evolving objects, which can be represented and documented by archived
webpages. Examples, with a focus on scientific software, as well as novel concepts
to create, share and link such object representations are presented and discussed in
Section 2.2.

9
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2.1 Temporal Archive Search (Tempas)

After the long-term preservation of the Web has been tackled as the first essential
step in Web archiving by different organizations, the true potential of the archived
collections can only be realized by enabling effective search and exploration over
such collections. Unfortunately, search over Web archives has been very limited.
Companies and organizations maintaining Web archives either provide only very
rudimentary search interfaces or pure URL-lookup services like the Wayback Ma-
chine. Further, usage patterns on Web archives as a corpus of study are not very
well understood, which results in a lack of training data for user intents and infor-
mation needs. Due to the size of data in those archives and their temporal aspect,
out-of-the-box search infrastructures with full-text indexes are resource and com-
putationally expensive and largely do not fit the needs.

Whereas full-text search is beneficial for a wide variety of informational intents,
there are specialized intents on archives for which we not always require indexing
full-text. Specifically, since most of the intents for information in Web archives are
navigational and temporal in nature, i.e. users are interested in specific resources
and their evolution over time, full-text contents may not necessarily be useful
here. Further, challenges like temporal ranking, link analysis and diversification
are widely not solved yet [38]. Current retrieval models to rank versions of webpages
are limited to relevance cues from document content [40]. This is primarily due
to the inability of the models to determine which page was important at a given
instant or interval of time. To make matters worse, it is even more difficult to
identify the variations of a page that are the most interesting for users in a given
time period only by analyzing internal properties of a page, like its content, as
detailed in [38]. Hence, as there are often multiple versions of the same page, a big
challenge is to identify which version is the most relevant with different textually
relevant versions of the same page being relevant at different points in time.

While determining authority of pages in an archive independent of a query
has been attempted by Nguyen et al. [77], popularity cues from external sources
have not been considered. By incorporating external data, such as explicit tem-
poral information about a website’s popularity, this can be simplified and lead to
a better retrieval performance. A source for that can be any dataset reporting
about other websites, such as social network data, where users post their favorite
or most controversial websites at a specific time of interest. Besides the explicit
time information, another advantage of searching external data instead of websites
itself is the more focused descriptions of only relevant pages. Users typically post
the essence instead of the often verbose contents found on the websites, including
layouts, comments, etc. Finally, this also allows for a leaner index, which is compu-
tationally less intensive for construction and storage as well as faster to query than
a corresponding full-text index. These critical factors for ever growing Web archive
collections with sizes in the order of hundreds of terabytes or even petabytes.

In view of these issues we propose an alternative search approach, which exploits
external data sources as proxies for popular and historically relevant websites,
instead of trying to compute those metrics on internal features of the archived
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websites. These surrogate information units have to be accurate enough to serve
the targeted information needs and provide us with the required temporal relevance
information. In the following we discuss two datasets as sources for this goal and
evaluate their applicability for Web archive search by means of two corresponding
versions of a prototype search system, called Tempas:

1. v1: built on data of the social bookmarking platform Delicious as an entirely
external source, which contains descriptive pointers to webpages created by
its users at different time points.

2. v2: incorporating hyperlinks and corresponding anchor texts, i.e., the click-
able text of a hyperlink, from external webpages, extracted from the Web
archive itself, that link and describe the destination pages in different time
periods.

2.1.1 Related Work

Web archive search can be considered a special case of Temporal Information Re-
trieval. While information needs in Information Retrieval are traditionally classified
according to the taxonomy introduced by Broder [44], user intents are different for
Web archives as studied by Costa and Silva [45]. In contrast to the majority of
queries being informational, where users search for information, in Web archives
queries are predominantly navigational, because users often look for specific re-
sources in a Web archive under a temporal aspect (cf. Sec. 2.1.2). The Internet
Archive’s Wayback Machine recently got a site search feature based on anchor
texts [32], using an approach similar to ours. However, in contrast to Tempas
system, the Wayback Site Search has no explicit temporal search support. Users
cannot specify a time interval for their queries, and results are limited to home-
pages, i.e., the hostname of a URL without a path. Thus, it can find Barack
Obama’s official website, but not his Wikipedia article or social media profiles.

Temporal Information Retrieval.

Temporal information retrieval has emerged as an important subfield in informa-
tion retrieval with the goal to improve search effectiveness by exploiting temporal
information in documents and queries [38]. The value of the temporal dimension
was clearly identified by Alonso et al. [37] and has led to a plethora of work which
utilizes temporal features in query understanding [39], retrieval models [40, 41]
and temporal indexing [42, 43]. A survey by Campos et al. [38] gives an elabo-
rate overview of the field. Most of the temporal retrieval models either focus on
temporal informational intents [40] or are concerned with increasing recall with
diversification [41, 78]. Temporal indexing approaches [42, 43] over Web archives
assume documents to be versions of full-text content. A survey of existing Web
archive search architectures was presented by Costa et al. [46]. We posit that
building a suitable temporal full-text index for Web archive data is challenging
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and expensive though and has never been shown to be sufficiently effective. Con-
trary to previous approaches that concern themselves with full-text indexes and
ad-hoc retrieval tasks we focus on building minimalistic indexes specifically for
temporal navigational intents.

Effectiveness of Anchor Texts

Anchor texts are incorporated by Tempas v2 as a consequence of the limited and
largely closed data from social media sources, such as Delicious, used in v1. The
effectiveness of anchor texts for the task of site finding was already shown by
Craswell et al. [64], though not in the context of Web archives or a temporal setting.
They are reported to be twice as effective as searching the contents of pages. The
authors in Kraaij et al. [65] combined anchor texts with content features for the
task of entry page search and also found that search just based on anchor texts
outperforms basic content features. In a similar experiment, Ogilvie and Callan [66]
showed that anchor texts are the most effective features among others, such as full
text and title, for the task of finding homepages and are only slightly behind full-
text search for finding so-called named pages. Koolen and Kamps [67] re-evaluated
the effectiveness of anchor texts in ad-hoc retrieval and showed that propagated
anchor text outperforms full-text retrieval in terms of early precision on the TREC
2009 Web track. The authors in Kanhabua and Nejdl [79] studied anchor texts in
a temporal context and analyzed their value in Wikipedia. Similar to our findings
presented in Section 2.1.6, they were able to observe evolutions of entities through
anchor texts, such as the transition of Barack Obama from senator to president.
They also proposed a temporal anchor text model for their study, though specific
to Wikipedia.

2.1.2 User Intents and Problem Statement

User intents formulated as queries and issued to a Web search engine are commonly
classified by their information needs into informational, navigational and transac-
tional. Broder [44] analyzed query logs and found that around a half of the queries
are informational. The other half is roughly split into 40% navigational and 60%
transactional queries.

These proportions are different for Web archives. There is seldom the need to
issue an informational query to a Web archive, partly because most informational
facts and intents can be served on the current Web as well. Also, transactional
queries, which refer to an action that a user wants to perform, e.g., chat or shop
online, are typically not applicable in an archive. Therefore, the majority of queries
to a Web archive are navigational.

Costa and Silva [45] confirmed this assumption by analyzing query logs of their
full-text search engine for the Portuguese Web Archive1. They report more than
a half of the queries to be navigational. From the other half a large majority was

1http://arquivo.pt

http://arquivo.pt
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informational with only 5-10% being transactional. However, what they consider
transactional is much more specific than the original definition, such as downloading
an old file or recovering a specific website. Similarly, their informational need refers
to collecting information about a subject in the past and can often be interpreted
as navigational.

Indeed, all information needs of Web archives could be considered navigational
in a broad sense. That is, instead of navigating to a specific resource, we want
to navigate to a specific information or subject, e.g., an entity. Some of these
entities are represented on the Web by their personal or official websites, others by
profiles on social networks or sub-pages on related websites, as well as Wikipedia
or similar knowledge bases. We refer to these central resources as authority pages
for a subject / an entity. These are dynamic though and may change over time by
some disappearing or moving to a different domain as well as new ones emerging.

Objectives of Tempas

The main objective of Tempas is to meet the information need of a user exploring a
Web archive and fulfill the user’s intent as defined above: Given a textual keyword
query together with a time interval we want to identify those webpages that are
central for the subject addressed by the query in the specified time period. For
instance, before the European Union received its own .eu top-level domain in
2005, the official website resided under .eu.int. Another kind of pages that are of
interest when working with Web archives are those in a certain category or with a
certain type of contents, such as online shops or restaurant menus. In contrast to
queries for authority pages, which are rather precision oriented, here recall matters,
for instance in data mining tasks (such a scenario will be discussed much later in
Sec. 4.1.4).

In summary, both types of navigational queries serve as important entry points
into huge Web archives, which is what we are aiming for. Even though users com-
monly have a subjective understanding of this problem, a quantitative evaluation
is not trivial due to the lack of a crisp definition of an authority page or appropriate
entry point. Moreover, we found that existing relevance judgments used in Web
information retrieval are not suitable for evaluating this task. For instance, in the
TREC 2012 Web Track ad-hoc judgements2, phoenix.edu was considered irrele-
vant for the query university of phoenix, which we consider a perfect hit. Therefore,
we conduct alternative evaluations by assessing the applicability of social book-
marks for Tempas in terms of its coverage and completeness in Section 2.1.4 as well
as qualitatively evaluating the performance of anchor texts for Tempas based on
example queries in Section 2.1.6.

Example Scenario

A typical scenario for Tempas is to find event related versions of an entity’s websites
in a Web archive. This can be important for researcher who want to study the topic

2http://trec.nist.gov/data/web2012.html

http://trec.nist.gov/data/web2012.html
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of an event from the past with the Web archive as their scholarly source. Today,
the same websites might not be relevant for that topic anymore or do not even
exist anymore. For that reason, the website would not be available in the index of
a current search engine or cannot be discovered by a user using the same keywords.
Consequently, it cannot be looked up in the Wayback Machine since that would
require to know the exact URL of a desired resource.

An example of such a scenario is the election campaign website of Barack Obama
for the US presidential election in 2008: change.gov. Today, the website shows an
image stating the transition has ended and the new administration has begun3.
Also, it is not among the top search results on Google anymore. A query for obama
election 2008 primarily yields more current websites reporting about the election.
A researcher who is interested in reproducing the campaign might however be more
interested in original content from that time. Also, regular users who just want to
revisit the pre-election promises to compare with the achievement of the elected
government would want to look at the original websites from back then.

2.1.3 Tempas v1: Based on Social Bookmarks

With this version of Tempas we explore the idea of taking advantage of social
media metadata about archived websites as cues for their importance. It is not
uncommon for commercial search engines to cross-reference social media feedback
in designing features for the same reason. One distinct advantage of such data is
direct human endorsement of websites that they find interesting. A second and
even more important aspect for the perspective of a temporal search engine is
its temporal annotation. Metadata from external sources like social networks is
typically timestamped, which proves to be a useful asset in identifying temporal
importance of websites.

Delicious4 as a formerly very popular social bookmarking platform is one of the
social media services that works in this fashion. Users post popular links and de-
scribe them with a concise set of tags as succinct descriptors. Tags are single terms,
for instance topics and subtopics, which together label and describe a website. In
addition to that, these tags carry temporal information that can be exploited for
search: While the tag community is frequently assigned to facebook.com today,
other communities, such as myspace.com were tagged with the term before. The
idea to base search on tags has been previously explored, but never in a temporal
dimension [80, 81, 82]. We now present a version of our Web archive search en-
gine Tempas that incorporates tags from Delicious in order to enable richer search
capabilities on archived webpages than currently available. Tempas v1 is deployed
under:

http: // tempas. L3S. de/ v1
3http://www.change.gov, visited: 22/12/2015
4https://del.icio.us

http://tempas.L3S.de/v1
http://www.change.gov
https://del.icio.us
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Figure 2.1. Tempas showing search results for obama and election be-
tween Jan 2005 and Dec 2008.

Overview

The initial prototype of Tempas is designed as shown in Figure 2.1. Relating to
the example from Section 2.1.2, it shows a query for obama during the time when
he was senator of Illinois from 2005 to 2008 before he became president. The
first suggestion bar, right below the query input, lists those terms that were most
relevant to the query during the selected time, which are frequently co-occurring
tags of the issued query. Of course, one of the top ranked tags here is the election,
which can be selected to refine the search results and focus on this particular
sub-topic. This opens up a second suggestion bar which is slightly more aligned
towards the election and re-ranks the tags according to their co-occurrence with
both query tags obama and election during the selected time period. The results
shown in the left panel are those websites which were most relevant for the users of
Delicious with respect to the given query terms and selected time period. Besides
Barack Obama’s official website and a website on statistics about the election on
the second and third rank, the first rank is actually his election campaign website
change.gov as desired.

To get an impression what is behind those websites, similar to search results
on Google or other search engines, every result includes a title. On Tempas v1 this
comprises the most related tags during the time period of the query. For the desired
election campaign website, these tags describe it as a political website of Obama
and his government, which includes news and blog articles. This description does
not necessarily correspond to the content of the websites, but instead represents a
temporal view on the websites by its visitors.

Up to this point, all information has been compiled purely based our external
source Delicious, without deriving data from the actual Web archive or computing
a ranking function on internal characteristics. Neither is it required to have the
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entire archive on-site. Only if the user clicks on a result it opens a version from the
queried time period using the Internet Archive’s Wayback Machine or any other
Memento compliant Web archive5.

By that, Tempas serves as an effective entry point to Web archives and naturally
provides high accurate results with respect to the underlying external resource. Re-
searchers using these results in their studies should be aware of the bias introduced
by the dataset, however, it allows them to build a corpus for their research which is
well-defined and easily comprehensible. While more advanced search and ranking
methods are often complex and their performance is questionable, especially on
temporal datasets such as Web archives, the results on Tempas solely correspond
to their temporal popularity on the external data source. Besides ranking up the
most temporally as well as topically related websites, like change.gov in our exam-
ple, it also filters the vast amount of noise and low-quality websites on the Web,
which are not included or less frequent in the external data.

Dataset

This work is based on the data of Delicious from 2003 to 2011, collected by Zubiaga
et al. [83]. The dataset, called SocialBM0311, has been published online and is
freely available6. It contains the complete bookmarking activity for almost 2 million
users from the launch of the social bookmarking website in 2003 to the end of
March 2011 with 339,897,227 bookmarks, 118,520,382 unique URLs, 14,723,731
unique tags and 1,951,207 users. Its size is 11GB of compressed, tab-separated
text data with each line in the following form:

<url_md5 user_id url unix_timestamp tags>
In the following we will refer to a URL as website or use the terms interchange-

ably. Every record in the dataset with its specific time is referred to as a version
of the website. In the final system this is linked to a capture in the archive, which
is a snapshot of when the website was crawled.

Data and Query Model

We operate on the tag dataset described above where websites, considered as our
documents d ∈ D, are tagged with labels l ⊆ L at a given time t ∈ T . We allow
for a discrete representation of time and assume a granularity of days. Each tuple
in the dataset can be represented as a triple (d, l, t) ∈ D × 2L × T . Note that such
a tuple represents the version of the document d at the time t. A temporal query
q = (ql , qt) has a text component ql ∈ L and a time period of focus qt ∈ T × T .
We require that the results for the temporal selection induced by the query return
versions of the documents which are valid in qt. In what follows, we use the terms
websites and documents interchangeably.

5http://mementoweb.org
6http://www.zubiaga.org/datasets/socialbm0311

http://mementoweb.org
http://www.zubiaga.org/datasets/socialbm0311
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Ranking Documents and Tags

For designing the retrieval model, we take the following desiderata into considera-
tion:

1. Most relevant websites in a given time interval with respect to certain query
tags are also most frequently tagged with the query terms during this time
frame.

2. More relevant versions of a website in a given time interval with respect to a
set of query tags are tagged with more of these tags and less other tags.

3. Most frequently co-occurring tags of given query tags in a certain time interval
represent their most related tags/topics during this time frame.

First, we retrieve a set of relevant documents R(q) which are valid in qt. A
document is considered relevant if its versions in qt cover the query terms ql. In
other words, the union of tags of all versions of d ∈ R(q) in qt must cover ql.

For ranking, we follow a nested ranking approach in which we first rank docu-
ments or websites and then rank its corresponding versions. Based on our desider-
ata, we compute the score of each document as the product of the mutual informa-
tion of the document d ∈ R(q) and the query terms in qt along with the popularity
of the document. The popularity of the document d is measured by the frequency
of versions of d tagged in qt. Note that there could be multiple tuples for the same
document with or without the same tag sets. Next, following the second desider-
ata, we rank the versions for a given document based on vanilla counts of query
tags associated with each version.

Finally, since we are also interested in retrieving related tags, we also retrieve
a set of relevant co-occurring tags given ql. A tag is deemed relevant if it co-occurs
with the query terms in ql. Similar to the document relevance, a tag might be
relevant even if it does not co-occur with all tags in ql for a version of d ∈ R(q) if
it co-occurs with the remainder of the tags is some other version of d. The tags
are scored and aggregated across all documents based on weighted counts of their
co-occurrences to give a final ranked list of most relevant co-occurring tags.

Index Structures

The core of Tempas v1 is a collection of indexes and mappings, which are tai-
lored for retrieving the above described result sets. All of them are built to pro-
vide retrieval with a monthly granularity. We created indexes to retrieve tags as
well as websites based on a query consisting of tags ql for a time period qt (i.e.,
TagTagMapping, TagUrlMapping). Furthermore, we created a year and monthly
based index to retrieve tags without providing tags as input (i.e., YearTagMapping,
MonthTagMapping) for exploratory search for a particular time interval without
providing tags as input. Another index allows retrieving all versions of a website
that have been tagged during a given time period together with the tags (i.e.,
UrlTagMapping). For a compact index structure, two mappings assign ids to tags
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and websites, which are used exclusively in all other indexes and mappings (i.e.,
IdTagMapping, IdUrlMapping). Even though there is much room for improvement
and optimization of temporal indexes [43, 84], the rather simple mappings, which
can easily be constructed using a distributed data processing platform like Hadoop,
already go a long way.

All indexes are ordered by their keys (i.e., ID, year, month or pair of tag and
year or website and year, respectively). The fetching of the indexes is realized
by Web services, which are invoked separately for tags and websites as well as a
single fetch for the versions with tags of each website. After fetching the data, all
items (i.e., tags, websites or versions) are ordered according the described ranking
functions.

The query with tags as well as the time period, consisting of start year and
month as well as end year and month, can be entered and selected at the top of
the page, using the search input and the three sliders as shown in Figure 2.1.

2.1.4 Evaluation of Social Bookmarks for Tempas

In the following we analyze the applicability of Delicious for searching webpages
from the past, as employed by Tempas v1, based on the following research questions,
with a focus on recall:
(R1) What fraction of websites clicked by users on a search engine in the past are

included in Delicious as well?
(R2) What topics or entities are covered by Delicious?
(R3) What are the natural limitations of Delicious as a dataset for temporal Web

archive search?
(R4) How do posting times on Delicious and query times in search engines relate

to each other?
The more disputable precision or temporal relevance, which is difficult to eval-

uate as alluded to in Section 2.1.2, is broadly subjective and inherently given by
Delicious when defined as popularity, considered as the number of users who book-
marked a certain page. For the later version of Tempas, based on anchor texts, this
is qualitatively evaluated and discussed in Section 2.1.6.

Analysis

The Delicious dataset spans nine years from 2003 to 2011 and contains about
340 million bookmarks, 119 million unique URLs, 15 million tags and 2 million
users [83]. Each bookmarked URL is timestamped and tagged with descriptors.
The methodology of our analysis is shown in Figure 2.2.

We begin with a query workload and identify the associated tags for each query
in Delicious. This is done by using Bing search results as a proxy and selecting
tags attached to the returned URLs. We then compute the overlap of clicked
search results in two query logs, from AOL and MSN, and the URLs tagged with
the query or its expanded tags to compute the recall of Delicious for temporal
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query

url1
url2
url3
...

tag1

tag2

tag3

...

urla
urlb
urlc
...

query

Bing (current) Delicious (temporal) MSN/AOL (past)

temporal search query logs

Figure 2.2. The analysis workflow from query-tag mapping using Bing
and Delicious to querying Delicious and comparing against MSN/AOL query
logs.

search. This is done for overlapping time intervals of both datasets, query logs and
Delicious, which are May 2006 for MSN and March to May 2006 for AOL.

As an example scenario, consider the clothing brand American Apparel. Using
the approach as described below, we map this query to the tags americanapparel
and apparel as well as t-shirts, which appears to be used quite synonymously
on Delicious. In the next step, we retrieve all URLs that were tagged with any
of these tags during a given time, here May 2006. This results in 227 URLs.
As a ground truth we compare against query logs from MSN and AOL from the
same time. These contain two and four URLs that users clicked on for the query
american apparel: americanapparel.net and americanapparelstore.com on
MSN as well as allonlinecoupons.com and usawear.org additionally on AOL.
As only the first two are contained in the set of URLs from Delicious, it reaches a
full recall of 100% (1.0) with respect to MSN and 50% (0.5) w.r.t. AOL. Analyzing
the precision remains for future work as it will require an appropriate retrieval
model to rank the relevant links up to the top. A high recall, however, is a crucial
prerequisite to make the system usable in practice.

Query-Tag Mapping. Our query workload comprises article titles from the Ger-
man Wikipedia, which we consider as entities in the following. In principle, the
approach is applicable to any type of queries, but the mapping of entity names
to tags is more straightforward than arbitrary multi-keyword queries, which would
usually refer to a set of tags instead of single representatives. The used Wikipedia
collection consists of 1.8 million articles from the main namespace without dis-
ambiguation and list pages. The focus on German aligns with the Web archive
available to us and also narrows down the vast number of articles on Wikipedia.
The titles were issued as queries to Bing between August 7 and 13, 2015 and we
stored the top 100 results for each query.

To map the queries to tags that best represent the corresponding entity, we
collected all tags from Delicious that were attached to the retrieved URLs from Bing
and used by at least 10 users. From these we kept only those tags that were used by
at least 10% of the users who posted one of the URLs for that query. In addition, we
selected a reference tag wref tag that exactly matches the query after down-casing
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Entity Tags #Q Recall

ESPN espn 7492 0.60
Gmail gmail 5285 0.92
Craigslist classifieds, popular, imported, craigslist 4943 0.80
Wikipedia wiki, encyclopedia, wikipedia 3063 0.60
Imdb cinema, imdb 2626 0.92
AIM aim 2180 0.57
YouTube flv, converter, youtube 1965 0.75
Sudoku sudoku 1739 0.75
PayPal paypal 1710 0.60

Table 2.1. Top 10 entities according to MSN query logs from May 2006
with a recall value of greater than 0.5.

and removing special characters. E.g., wref(Barack Obama) = barackobama. For
the remaining tags we computed an adaption of IDF (inverse document frequency)
based on the total number of considered queries and relative to the reference tag
for normalization:

idf(w) =
log(|queries|)

|{q ∈ queries | w ∈ tags(q)}|

rel.idf(w) =
idf(w)
idf(wref)

This number indicates the generality of the tag, i.e., how specific it is to the assigned
query. Additionally, we computed what we call exclusiveness. A high exclusiveness
indicates that the tag does not often co-occur with the reference tag, which would
be uncommon if both tags represent the same entity:

excl(w) = 1− #posts(w,wref)

min(#posts(w), #posts(wref))

#posts(w1, w2, ...) defines the number of posts on Delicious with all specified tags
w1, w2, ... as unique pairs of user and posted URL to filter spammers with a large
number of posts of the same URL.

To combine the numbers, we computed the average score of each tag w as
0.5 · (rel.idf(w) + excl(w)) for every query with reference tag wref. The resulting
score indicates how specific a tag is to its considered query and at the same time
how complementary or exchangeable it is to the reference tag, which we consider a
representation of the corresponding entity. Experiments have shown that a thresh-
old of 0.7 reliably identifies true representative tags for a query. Thus, we took all
tags with a score equal or greater as well as wref.

Examples are shown in Table 2.1. Although this simple approach is not accurate
in all cases, it is good enough for an experiment like ours. While it worked well for
entities like Wikipedia, it sometimes yields too general tags, like popular in case
of Craigslist. For other entities, some tags seem too generic at the first glance,
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but appear to be used almost synonymously on Delicious, such as the format flv
for YouTube. However, the quality is acceptable and a better mapping would have
only resulted in even higher recall values as we will show in the following.

Querying. To assess the recall of the considered Delicious dataset, we queried it
for the identified tags and at the same time selected records for the corresponding
entity from the MSN and AOL query logs. We matched queries with exact name as
extracted from the Wikipedia titles, ignoring case. The clicked URLs for a given
query served as ground truth in the experiment and we measured recall by counting
how many of those could be also found in Delicious. Each URL annotated with
one of the considered tags was selected. We operated under the assumption that
tags identified by us were also used back in the past, which we believe is valid, as
most tags relate to entity names or variations. In total, 12,106 entities could be
successfully mapped to tags as well as corresponding queries in the MSN query logs
and 12,170 in the AOL logs.
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Figure 2.3. Comparison of the numbers of entities in the
MSN query log vs. Delicious with different recalls and the
average recall considering entity-tag mapping or not, par-
titioned by the popularity of entities according to number
of queries in the logs.

From Table 2.1, which
shows the top 10 entities
with the highest frequency
in the MSN logs and a recall
of greater than 0.5 on Deli-
cious, a certain bias towards
rather technical and Internet
related entities can be ob-
served (R2). A bias to a cer-
tain, less popular type of en-
tities could also be affirmed
by counting numbers and re-
call values for entities of dif-
ferent popularities as shown
in Figure 2.3: Even though
all of the most popular enti-
ties could be mapped to tags
in Delicious, their recall is
relatively low. However, the
highest presence in Delicious

was not among the least popular entities either, but among those that were queried
by up to 100 search sessions in the MSN logs. Also, the highest recall values were
reached for the long-tail as well, rather than for the more popular entities (R3).

To ensure the observed recalls are not due to a poor mapping (see Query-Tag
Mapping above), we computed the recall values of the same entities also by con-
sidering the entire Delicious dataset, not only results retrieved by the mapped tags
(unmapped). This suggests the upper bound, which could potentially be reached
given a better entity-tag mapping. However, as presented in the figure, these recall
values are only slightly higher than the ones achieved with our mapping.
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Figure 2.4. Top X entities according to their Delicious
recall with respect to MSN and AOL query logs.

Overall, the average re-
call values of the entire ex-
periment resulted in 48%
w.r.t. MSN and 46% w.r.t.
AOL. Although this is al-
ready a good result, it gets
even better by looking at
those entities, which are
strongly represented on De-
licious and reached the high-
est recalls in the experiment.
As presented in Figure 2.4,
for the top 2000 entities we
achieve a full recall w.r.t.
both query logs. The top
6000, which is about 50%,
still exhibit a recall of almost
0.8 with even slightly higher values w.r.t. AOL (R1).

This shows, about half of the URLs that users clicked in a search engine can be
found by using Delicious as an external data source to search Web archives. Even
more intriguing, if used with the queries that are best represented by the dataset,
we can even reach much higher values up to a recall of 100%.

Temporal Search

So far, none of the presented analyses has taken into account the temporal aspect,
although our ultimate goal was to evaluate the applicability of Delicious as external
data source for temporal Web archive search. Thus, we wanted to know, given the
fairly good recalls achieved before, are the URLs spread across the entire dataset
or focused around the query times of the available logs. Figure 2.5 presents these
temporal recall results. To get comparable values, we queried Delicious with the
same approach as before just only around the time spans of the logs, i.e., May 2006
for MSN (0) and March (-2) to May 2006 (0) for AOL. The x-axis in the figures
denotes the time difference in months up to one year in the future and the past.

Notable is that in all plots, up to a difference of around three months, the
recall grows faster by relaxing the search interval to the past. However, from the
third month on the recall gain is higher by expanding the search interval to the
future. This suggests posts on Delicious are lagging slightly behind the queries in
the considered search engines. Overall the results are a slightly higher w.r.t. the
AOL query logs, which, however, may be due to the fact that it spans three months
instead of one, covered by MSN. Hence, in May Delicious is already two months
ahead of AOL. This corresponds to the observation that the recall w.r.t. MSN for
three months from 0 to 2 approximately matches the recall w.r.t. AOL in month
0. Overall, the recall results come very close to what we observed in Figure 2.4.
While we achieved a full recall for the top 2,000 entities from the entire dataset,
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Figure 2.5. Tempas v1 recall w.r.t. MSN query logs from May 2006 (0)
and AOL query logs from March 2006 (-2) to May 2006 (0).

already a search span of two years, 12 months in the future and 12 in the past,
is sufficient to retrieve 95% w.r.t. MSN and even more than 95% w.r.t. AOL, as
presented in Figure 2.5c. Even more intriguing, we only lose about 10% of recall
by searching as little as two months in the past and three months in the future
(R4). However, in favor of Delicious was the fact that the platform was relatively
popular during the analyzed time. Thus, the results might be lower today and call
for alternative datasets.

2.1.5 Tempas v2: Based on Anchor Texts

Switching to anchor texts with the second version of Tempas is the natural con-
sequence to make the approach of incorporating external cues for temporal search
more sustainable, since Delicious is a closed system and the available data is lim-
ited (cf. Sec. 2.1.3). We also showed that it is very biased towards a certain group
of users and the shift to anchor texts can deliver better results, for more diverse
queries. Tempas v2 is based on anchor texts extracted from a temporal Web archive
corpus. We built it on the observation that anchor texts are crucial text segments,
which in many cases succeed well to describe succinctly the target webpage, and
hence are a natural choice for navigational queries.

Instead of the Delicious tags as used in Tempas v1, we now identify temporal
anchor texts as surrogate information units of the target webpages in a given time
period and propose lean index organization methods to support temporal, naviga-
tional needs. Anchor texts are short, concise, important and non-noisy descriptors
of information content, typically desired by navigational queries. Just like the tags
before, anchor texts as surrogates are many orders smaller than the original full
text of a page, resulting in a leaner index.

With Tempas v2 we propose a temporal retrieval model based on such anchor
texts that ranks webpages not only by textual relevance but under consideration of
their decisive times. While this method does not cover pure informational needs,
it successfully identifies results beyond navigational needs including representative
pages for entities that vary over time. With this model we present a fully functional
indexing and retrieval system under:

http: // tempas. L3S. de/ v2

http://tempas.L3S.de/v2
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Figure 2.6. Screenshot of Tempas v2 for query ’obama’ in period 2005 to
2012.

Overview

The previous design of Tempas was driven by the structure of its underlying dataset
as well as the desired temporal search capabilities. In contrast to that, Tempas v2
has been designed closer to the layout of a common search engine for the current
Web, in order to make it more accessible for regular users, but also, with the tem-
poral features of v1 in mind. As a result, it is all temporal again while resembling
the look of a familiar search engine.

Users can formulate their information need by specifying a textual query with
the option of selecting a time interval of interest. The screenshot in Figure 2.6
shows the graphical interface. After a query is issued (here: obama) the user can
select a time interval for the search in yearly granularity, as opposed to the monthly
granularity supported by the first version, which was shown in Section 2.1.4 to
be unnecessarily narrow in order to achieve a reasonable recall. The results are
presented as shown in the screenshot with titles, snippets and years compiled of
matched anchor texts and sorted according to their temporal popularity based on
usage frequencies. The exact model used will be elaborated further in the following
passages.

Searching Anchor Texts

Anchor texts are a special type of text and should not be treated as running text,
like articles or similar content. We are purely using texts included in a link, i.e.,
the text a user can click on to follow the link. Although those snippets have some
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disadvantages in being potentially less descriptive than the text surrounding a link
or the content of a linked page, they have great advantages for our primary use
case of finding authority pages as described above:

• Anchor texts describe with a high confidence the linked webpage with little
distracting or unrelated content. This prevents pages from showing
up for unrelated query terms and gives a higher relative relevance to page
actually related to a query term.

• Often, anchor texts contain the name of the linked page or a concise label
of the linked content. Hence, these terms are frequently used to link to
authority pages of entities. For instance, the name of a person is outstand-
ingly often used to link to the person’s website, which is therefore likely to
be ranked high for this query.

• As probably intended by the original reason for hyperlinks on the Web, an-
chor texts frequently point to pages containing a more detailed description
of the contained terms. This way, instead of repeating descriptions or def-
initions, pages link to the most meaningful explanation of the linked text,
which often is a social profile, the official website, or an encyclopedic article,
e.g., Wikipedia.

• Within a website, anchor texts are used as navigational elements to refer
to certain parts of the site, e.g., the menu on a restaurant site. The same
term is then commonly used in connection with the site’s name to deep link
into that part of the website from external pages.

Temporal Retrieval Model

The retrieval model for Tempas v2 is based on the given Web archive as well as a
fixed, pre-defined temporal granularity (we use one year). We split the time period
covered by the provided Web archive collection into equally sized time intervals
of this granularity {[t0, t1], [t2, t3], . . . , [tn−1, tn]}. For each of these time intervals
we create a temporal Web representation, derived from a set of links L[ta,tb]. In
the presented implementation of Tempas, L[ta,tb] comprises only those links that
appeared in the given data during the corresponding interval and has not existed
or discovered before, assuming that it was created in that time period, later referred
to as Lemergence later. This conception of links that are posted on the Web with their
emergence indicating some kind of growing attention of the linked target page, is
derived from the respective temporal graph model G. More details on that as well
as different graph models, based on snapshots representing a specific state of the
Web or with all links merged across a time period will be presented and discussed
later in Chapter 4 (Graph-centric View). With the graph, the set of links, as well
as corresponding anchor texts A, we now define a Web model for each time interval
under consideration:

W[ta,tb] = (G[ta,tb], A[ta,tb], L[ta,tb])
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In the following we omit the interval and treat the Web modelW = (G,A,L) for
every interval independently. From the graph G = (V,E) of W , each node v ∈ V
represents a page that is either part of the Web archive in the current interval or
is linked to from such a page but not necessarily contained itself. Let freq(v, a)
be a scoring function used to compute the relevance of the page represented by
node v for a given anchor text a ∈ A. We define this function based on the edges
e = (u, v) ∈ E with source u ∈ V and destination v for which a link l ∈ L
exists with anchor text a (luva). Instead of counting these edges directly, we count
the number of different hosts host(u) of the source nodes u of the edges, i.e., the
hostname in the URL of the page corresponding to node u, e.g., en.wikipedia.org
in https://en.wikipedia.org/wiki/World_Wide_Web:

freq(v, a) = |{host(u)|e = (u, v) ∈ E ∧ (e, a) ∈ L}|

Host frequencies have turned out to be more resistant against link spam in our
experimentation. While many pages linking to a single URL may all belong to the
same website and hence, created by the same domain owner, these are counted
only once in our system. To compute the relevance score rel(v, a) this frequency
score is normalized based on the maximum among all v ∈ V and all a ∈ A, which
results in numbers between 0 and 1. Finally, we introduce a multiplicative factor γ
to get positive scores along with a logarithmic function to dampen the differences:

rel(v, a) = log(
freq(v, a)

maxv∈V,a∈A freq(v, a)
· γ)

This score is used to boost the textual relevance of the query, i.e., a double
boost means a match is twice as important. The textual relevance is computed
among all anchor texts for a page that fall into the same relevance class ϕ =
relc(v, a), which we consider the floor of the relevance score, i.e., the greatest
integer less than or equal to this score:

relc(v, a) = brel(v, a)c

For the boosting we multiply the relevance class score with the logarithm of the
maximum score to account for time intervals with low overall frequencies. Since
it is easier for a page to receive a high relevance score if only very few pages are
archived in that time period and potentially link to a page, we want to reward
those hits for a query that receive a high relevance score in a time period with a
larger number of pages in the archive:

boost(ϕ) = ϕ · log( max
v∈V,a∈A

freq(v, a))

The result ranking is then computed based on the textual relevance scores re-
trieved from our index (see below) for all relevance classes ϕ and boosted according
to the boosting score as defined above. The final score is the linear combination of
all boosted scores.
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Year Count Year Count Year Count

1996 17 2002 3109 2008 28764
1997 166 2003 16222 2009 30132
1998 92 2004 225066 2010 49658
1999 120 2005 42378 2011 64692
2000 128 2006 85691 2012 87444
2001 955 2007 111561 2013 48871

Table 2.2. Maximum frequencies in Tempas v2 per year.

Index Construction and Retrieval

The indexes for our Tempas v2 system have been computed according to the
models described above on the German Web archive from 1996 to 2013, which
was collected by the Internet Archive. It consists of more than 2 billion distinct
archived webpages under the German .de top-level domain. These link to a total
of 26,443,384,902 URLs, not only under .de. After filtering malformed / invalid
URLs as well as those that are very infrequently linked, i.e., rel(v, a) is smaller
than 1 for any anchor text a that links to the page represented by node v, we are
left with 319,574,156 URLs that go into our index. The maximum frequencies of
links from distinct hosts to distinct destinations with distinct anchor texts, that
are used for normalizing the relevance scores as well as for boosting, are listed in
Table 2.2.

Tempas v2 is implemented using Elastic Search7 (ES). ES creates a separate
full-text index for each indexed field in its schema. We defined this schema
such that a field of a document, i.e., a page / URL, represents a relevance
class ϕ in one time interval. We used a yearly granularity for building our
indexes, so one time interval represents a year y ∈ {1996, 1997, . . . , 2013}:
[ta, tb] = [y/01/01 - 00:00:00, y/12/31 - 12:59:59]. For each of these time intervals
we extracted the link list Lemergence and corresponding temporal model (see
Sec. 4.1). To compute the relevance scores for our retrieval model as described
above, we set the parameter γ = 10, 000, i.e., we consider four decimal places of
the normalized frequencies, and used basis 3 for the logarithm. This results in rel-
evance classes between 0 and 8. Finally, the anchor texts a ∈ A that describe any
of the links to a URL represented by a node v ∈ V form the document of the cor-
responding webpage, with a indexed in the field of its relevance class relc(v, a), e.g.:

{
"url": "http://.../wiki/World_Wide_Web",
"years": {

"2013": {
"8": ["World Wide Web", "WWW", ...],
"7": ["internet", ...]

7http://www.elastic.co

http://www.elastic.co
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...
},
"2012": {

...
},
...

}
}

Depending on the selected time period the corresponding fields are queried.
Textual relevance is computed by ES among all anchor texts in these field based
on a vector space model using a variant of tf-idf, i.e., a combination of the term
frequency, inverse document frequency and field-length norm8. This is boosted and
averaged as defined above and the results are ranked accordingly. The title and
snippets shown in Figure 2.6 are generated from matching anchor texts sorted by
the boost values of the fields that the anchor text appears in as returned by ES’s
highlight feature. The same order is used for the years listed below each search
result, with the first year being selected as the main year linked by the title.

2.1.6 Evaluation of Anchor Texts for Tempas

In the following we give a qualitative evaluation of the Tempas v2 system. Before
we will look at some example queries and analyze the results returned by Tempas
for these queries in more detail, we discuss our general observations of the system.

General Discussion

In our current Tempas version not all the returned search results are available in the
underlying Web archive, as that is not checked when the indices are built. Instead,
we provide a feature to check search results for presence in the Internet Archive’s
Wayback Machine at the displayed years after they have been returned to the user
and hide them in case they are not archived. In the following we will ignore this
and discuss all results returned by Tempas, regardless of whether they are archived
or not.

Anchor text search: Anchor texts have special characteristics and should not
be treated as running texts as we discussed in Section 2.1.5. We found our result
rankings often to be highly satisfactory for queries taking those characteristics into
account, but less useful when formulated differently. For instance, the name of a
website typically yields what is expected, while the topic does not. E.g., the query
google results in google.com and google.de at the top ranks, however, the query
search engine does not even return these URLs on the first page. A reason for this
is that famous websites are usually linked by their name instead of a description,

8https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-
theory.html

https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html
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while the descriptive terms may be part of another site’s name, which is then ranked
higher, such as searchenginewatch.com.

This meets our objective of finding suitable entry points into a Web archive,
such as a specific page even if the URL changes over time. However, we do not
cover the opposite case where the name of a website has changed, and possibly the
URL too. For such renamings one would like to find the former URL under the
current name, which would require a deeper evolution analysis of the Web graph,
which is out of the scope of this work.

Another assumption is that pages are sufficiently frequently linked to. This is
not always the case especially in the earlier periods of our Web archive due to the
limited number of available pages (cf. Table 2.2). As a result, the performance of
Tempas is better for queries at query intervals starting from around the mid 2000s.

German Web dataset: Although the index of Tempas was built from a Ger-
man Web archive, it is not limited to webpages from the German Web but can
also find pages under different top-level domains that are linked from a page un-
der .de. For multi-lingual websites, such as Wikipedia, the German versions are
typically preferred, as these are more frequently linked from other German web-
sites and therefore receive higher frequency scores (see Temporal Retrieval Model
in Sec. 2.1.5).

We observed that English query terms or non-German entities work quite well
in many cases and return the expected results, but overall result in fewer hits, e.g.,
obama has only 724 results, while merkel has 11,913. This is usually not critical,
as similar to what happens with popular search engines like Google or Bing, often
only the very first hits in Tempas are relevant for a query. While that is typically
the first page, i.e., first ten hits, in Tempas we found that very often only the first
one to five results are subjectively very relevant to the query. This can be partially
explained by the diversification features of the big, multi-purpose search engines,
as well as their goal to meet various kinds of information needs as opposed to the
more focused navigational needs we are addressing. Thus, a general query issued
to search engines is often multi-faceted and the sought information is scattered
among multiple pages, while navigational queries on Google or Bing are usually
answered by only a few hits.

Temporal granularity: By temporally searching Tempas, i.e. entering both a
textual query and a time interval, we found that the quality of results is much lower
when only single years are selected as opposed to selecting a range of consecutive
years. Even though our indices are built on a yearly basis (with separate fields
for each relevance class), it appears that only combining multiple indices leads to
the expected results. By further analyzing this issue, we found that more famous
pages are permanently linked over time but often do not show peaks for single
years like less popular pages sometimes do. Averaging over multiple years results
in a smoothing of these peaks and drops the subjectively less relevant results below
these temporally highly frequent hits. For that reason, all example queries discussed
below are issues for periods of multiple years instead of single years.
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obama @ [2005, 2006]

1. http://obama.senate.gov
2. http://de.wikipedia.org/wiki/barack_obama

obama @ [2005, 2007]

1. http://myspace.com/barackobama
4. http://obama.senate.gov
5. http://youtube.com/profile?user=barackobamadotcom

obama @ [2008, 2013]

1. http://barackobama.com
2. http://de.wikipedia.org/wiki/barack_obama
3. http://twitter.com/barackobama

Table 2.3. Selected temporal hits for query ’obama’.

Example Queries

Let us now discuss a few example queries that we consider to be potentially inter-
esting for the problem of temporally navigational queries in Web archives: Barack
Obama, Angela Merkel, European Union, Creative Common License andWikipedia.
All of them feature temporal characteristics, stressing different aspects.

Barack Obama. One of those entities popular all around the world is the US
president. During the later times of our dataset this was Barack Obama. Therefore,
he will serve as our first example query. Figure 2.6 shows the results for the time
from when he became Senator of Illinois in 2005 until 2012 when he was re-elected
as president. Although in this case the query is only his last name obama, we receive
hits solely for Barack Obama as he is more prominently linked on the German Web
than for example his wife Michelle Obama and search result diversification features
are not implemented in our retrieval model.

When searching this long time frame of eight years, Tempas finds the overall
most prominent authority websites of Barack Obama in these years, as expected:
1. his official website, 2. his Wikipedia article, 3. his Twitter account. More
temporally sensitive results are retrieved when meaningful time frames of Barack
Obama are queried, as shown in Table 2.3. For instance, in 2005 / 2006, i.e.,
Obama’s first two years as senator of Illinois, his senate page is the top hit, followed
by his Wikipedia article. By extending the time interval to 2007, that page gets
pushed to rank 4, caused by the rise of social media with his Myspace page taking
the lead and his YouTube profile on rank 5. In between are German news articles
reporting about his run for president (not shown in Table 2.3). Starting from when
Obama was elected president in 2008 we get the same results as discussed above,
including his official website and Twitter replacing Myspace as his main social
media profile. Before 2005 there are no hits for Barack Obama at all, because he
was very famous in Germany and therefore, not sufficiently linked.

Angela Merkel. An equally famous politician, especially in Germany, is the
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merkel @ [2000, 2004]

1. http://merkel.de (university bookstore Merkel)
2. http://angela-merkel.de

angela merkel @ [2000, 2004]

1. http://angela-merkel.de
2. http://cdu.de/idx-merkel.htm
3. http://cdu.de/ueber-uns/buvo/pv/pv.htm

merkel @ [2005, 2010]

1. http://angela-merkel.de
2. http://de.wikipedia.org/wiki/angela_merkel

merkel @ [2010, 2013]

1. http://angela-merkel.de
2. http://facebook.com/angelamerkel?...
3. http://de.wikipedia.org/wiki/angela_merkel
4. http://twitter.com/search?q=%23merkel

Table 2.4. Selected temporal hits for query ’merkel ’ and ’angela merkel ’.

German chancellor Angela Merkel. However, it is interesting to search only her last
name before 2005. In contrast to Obama, which always referred to Barack Obama
and was not relevant at all before, Merkel was the name of a university bookstore,
which received even more links from 2000 to 2004 than the later chancellor, as
shown in Table 2.4. Unfortunately, this website is not present in the archive and
the domain is used differently today.

Therefore, to query for the person Angela Merkel, her full name should be used
in earlier years. After 2004 this does not make a difference anymore. Angela Merkel
exhibits a similar evolution as the US president, which can be observed through
Tempas as well. Before she was elected chancellor in 2005 she became the leader of
her party CDU in 2000. Therefore, next to her official website, pages on the party’s
site are among the top hits. From 2005, with her election, also her Wikipedia page
become more popular. Later, in 2010, her social media profiles on Facebook and
Twitter began to gain popularity.

European Union. Like many international organizations, the Euro-
pean Union’s official website was located under the top-level domain .int:
http://europa.eu.int. In 2005, they received their own top-level domain .eu:
http://europa.eu. Today the .int URL does not exist anymore and the .eu one
replaced it completely. This evolution is reflected by the queries shown in Table 2.5.
In addition, as for most famous entities, their Wikipedia article has become one
the most important resources about the EU.

This is a classic example where looking up a website in a Web archive is difficult
as we need to be aware of the former URL that was active at the time of interest.
Without a system like Tempas the best bet would be the current URL of the EU,
which did not exist prior to 2005.
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european union @ [1996, 2005]

1. http://europa.eu.int

european union @ [2005, 2013]

1. http://en.wikipedia.org/wiki/european_union
2. http://europa.eu
3. http://europa.eu.int

Table 2.5. Selected temporal hits for query ’european union’.

Creative Commons License. Creative Commons (CC) is one the most popu-
lar copyright and open content licenses. Since the inception of the CC organization
in 2001 and the release of the first version in 2002, there have been three updates
until its current version 4.0 was released in 20139.

The different variants of the CC license, e.g., BY-NC-SA, BY-NC-ND, . . . ,
are used by many projects on the Web. As they are commonly linked under the
name Creative Commons License, their version history can be traced through the
Tempas search results, shown in Table 2.6. At any time, the query leads to the
current version of the license. Even though the URLs change over time, the query
together with a timespan can be considered a temporal reference.

Wikipedia. Today Wikipedia is widely known under its domain
wikipedia.org or corresponding language versions, e.g., de.wikipedia.org for
the German version of Wikipedia. However, when it was launched in 2001, its do-
main was under .com and moved to .org one year later. Today, the .com domain
and sub-domains forward to their .org counterparts and no one is aware of the
old URLs anymore. Without this information, it is impossible to look up the early
website of Wikipedia in a Web archive. Again, this is revealed by the search results
in Tempas, shown in Table 2.7, which make such a lookup very easy.

9https://wiki.creativecommons.org/wiki/License_Versions

creative commons license @ [2002, 2003]

1. http://creativecommons.org/licenses/by-nc-sa/1.0
2. http://creativecommons.org/licenses/by-nd-nc/1.0

creative commons license @ [2004, 2006]

1. http://creativecommons.org/licenses/by-nc-sa/2.0
2. http://creativecommons.org/licenses/by-nc-nd/2.0

creative commons license @ [2007, 2013]

1. http://creativecommons.org/licenses/by/2.5
2. http://creativecommons.org/licenses/by/3.0
3. http://creativecommons.org/licenses/by-nc-sa/3.0

Table 2.6. Selected temporal hits for query ’creative commons license’.

https://wiki.creativecommons.org/wiki/License_Versions
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wikipedia @ [2001, 2002]

1. http://de.wikipedia.com/wiki.cgi?wikipedia_willkommen
2. http://wikipedia.com
3. http://de.wikipedia.com

wikipedia @ [2003, 2013]

1. http://de.wikipedia.org
2. http://de.wikipedia.org/wiki/hauptseite
3. http://wikipedia.de
3. http://wikipedia.org

Table 2.7. Selected temporal hits for query ’wikipedia’.

2.1.7 Conclusion and Outlook

Web archives are large longitudinal collections that store webpages from the past,
which might be missing on the current live Web. Consequently, temporal search
over such collections is essential for finding prominent missing webpages. However,
this has been challenging due to the lack of popularity information and a proper
ground truth to evaluate temporal retrieval models. Limited search and access
patterns over Web archives have been well documented. One of the key reasons is
the lack of understanding of the user access patterns over such collections, which in
turn is attributed to the lack of effective search interfaces. Current search interfaces
for Web archives are (a) either purely navigational or (b) have sub-optimal search
experience due to ineffective retrieval models or query modeling. We identify that
external longitudinal resources, such as social bookmarking data and anchor texts,
are crucial sources to identify important and popular websites in the past. To this
extent we present Tempas, a temporal search engine for Web archives. Tempas
operates as a fairly non-invasive indexing framework, constituting an attractive
and low-overhead approach for quick access into Web archives by not dealing with
the actual contents. The ability to specify a time period together with the textual
query enables temporal information retrieval capabilities for Web archives.

Websites are posted at specific times of interest on several external platforms,
such as bookmarking sites like Delicious. The timestamped bookmarks on Delicious
provide explicit cues about popular time periods in the past along with relevant de-
scriptors. Attached tags do not only act as relevant descriptors, useful for retrieval,
but also encode the time of relevance. These are valuable to identify important
documents in the past for a given temporal query. With Tempas v1 we tackle the
challenge of temporally searching a Web archive by indexing tags and time. We
allow temporal selections for search terms, rank documents based on their popular-
ity and also provide meaningful query recommendations by exploiting tag-tag and
tag-document co-occurrence statistics in arbitrary time windows. Our evaluation
shows, it is crucial to keep in mind the bias of any dataset used with the presented
approach, as obviously only queries supported by the dataset can lead to satisfying
results. It turns out, the best represented entities among the most popular ones on
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Delicious are from the technical domain. Nevertheless, even overall we reached a
promising recall of 46% to 48% w.r.t. the analyzed query logs from MSN and AOL.
By focusing on the top queries, which exhibit the best recall results, a full recall of
100% could be retained up to the top 2000 of the about 12,100 analyzed entities.
The top 50%, approx. 6000 entities, still result in a recall of almost 80% on average.
Further, we investigated temporal recall values with respect to the time spans of
the query logs around May 2006. It has shown that most of the websites of interest
w.r.t. the query logs also appeared on Delicious around one year before and after
the query times. Already five months around the query time result only in a little
loss of recall.

In order to cover the missing entities over time for a more complete Web archive
search, we investigated different sources for the same purpose and found anchor
texts as meaningful text surrogates that can act as reasonable entry points for the
exploration exploring of archived pages. This finding lead to Tempas v2, a new ap-
proach to searching Web archives based on temporal link graphs and corresponding
anchor texts. By providing us with richer texts, anchor texts are also less biased
as well as a less limited good, since they can be extracted from the Web archive
itself. Departing from traditional informational intents, we show how temporal an-
chor texts can be effective in answering queries beyond purely navigational intents,
like finding the most central webpages of an entity in a given time period. We
propose indexing methods and a temporal retrieval model based on anchor texts.
Finally, we discussed several interesting search results, which reflect the evolutions
of entities but also provided useful entry points into the massive archives. In the
remainder of the work, we will show the versatility of this in different use case
scenarios, like a data analysis experiment in Chapter 4, where we showcase how
temporal Web graphs, as exploited by Tempas v2, help to identify starting points
for an analysis of a massive archive by using a tool like ArchiveSpark, which will be
presented in Chapter 3.

2.2 Temporal References and Links

In the area of digital libraries and in the scholarly domain in general exist many dig-
ital identifiers used to reference objects and entities in literature, most prominently,
the Digital Object Identifier (DOI) [85]. These identifiers are commonly backed by
a set of metadata that describe the referenced object. While meta information are
easy to create and maintain for fixed objects, such as scientific publications, which
do not change anymore after they have been published and assigned their DOI,
this approach does not scale well for more dynamic entities. Therefore, we now
propose archived snapshots from the Web as an alternative as well as temporal
representation for dynamically evolving entities.

As one such subject, we consider software, an omnipresent good in science that
is often referenced in literature. Software is constantly being developed and can
have a different state in every moment, especially if it is open source and being
developed by a large community. In such cases, it is difficult to permanently keep
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corresponding metadata up to date. Even more challenging, a software that is
developed by thousands of developers, with every developer working on a small
piece of it, is nearly impossible to be precisely expressed by a fixed set of metadata
values. Further is such a representation in many cases not what a reader requires
to fully understand the referenced asset. Way more useful would be a description,
documentation, or even the source code in case of software. We found that most
of this information already exists on the Web [5], as we see in Section 2.2.2.

From an author’s perspective who wants to reference some entity or object that
is not explicitly prepared for this, the collection of all required meta information
to comprehensively describe the referenced asset means a big additional effort. In-
stead, we often see very vague references in literature, e.g., only a name, sometimes
with the version or date. Similarly, references to Web resources, such as blog arti-
cles, are made as a footnote containing the URL. However, even if the date of visit
is specified, this is not very helpful as the referenced blog post or linked resources
may already have changed by the time it is read.

Many of these problems could be solved if we had richer presentations of the
cited objects. If the reader does not only see the name, version and author of a
referenced software, but can actually read the documentation at the time when
the author accessed it. For that reason, we propose Micro Archives : microscopic
collections of archived resources on the Web that describe a single entity or object,
cohesively preserved for future reference. While existing Web archives already pro-
vide the necessary infrastructures to preserve all required resources individually,
Micro Archives can be considered a logical and semantic connection of such re-
sources to provide a holistic view onto a cited object. Furthermore, metadata that
may be available in unstructured or semi-structured form as part of such a Micro
Archive can be dynamically extracted and presented as needed whenever required.

Before we get to the details of Micro Archives, we will first discuss a case
study on the representation of scientific software on the Web and its coverage in
Web archives to motivate the ideas and show off current problems as well as the
potential of the presented approach. Finally, we present Micrawler, a modular proof-
of-concept prototype that implements the entire pipeline of creating, archiving,
analyzing, presenting and citing Micro Archives, along with a practical example of
how our approach can be used within the scientific publication workflow. Further,
we showcase two use case scenarios, i.e., 1) blog articles, 2) software, which we
have investigated in terms of inconsistencies that could be fixed with Micrawler in
the future. Finally, we will highlight the opportunities created by Micro Archives
in various areas and stress why we think the presented concepts are an inevitable
step in our digital world.

2.2.1 Related Work

Piwowar et al. [86] provided evidence that enhanced access to research data lead
to an increased number of citations. Although there has been a quite some work
on research data and its use in literature [87, 88, 89] as well as on Web archives as
containers for cultural, personal or scientific entities [90, 33, 91], there is not much
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on combining both aspects as we intent with our work. Dynamic research data,
such as software, has been neglected for a long time because of its volatility and
its development process that cannot be suitably mapped by traditional metadata.
Only recently, several initiatives have emerged to foster the use of software in a
scientifically sound manner, such as the Software Sustainability Institute, Software
Heritage or FORCE11 10 [92, 93, 94, 95]. However, we are the first to propose the
incorporation of Web archives for this purpose.

Web Archiving

With the growing interest of Web archives, it has become a dire need to preserve
scientific information before it vanishes from the Web [96, 97, 98]. Web archives
have been gaining growing popularity as scholarly source [30] in disciplines like
the humanities [99]. Further, Web archives have been of interest as subject of
research themselves. In 2011, Ainsworth et al. [96] analyzed how much of the
Web is archived and found that for up to 90% of the pages in the considered
collections at least one archived version exists, however, only a few of them have
a consistent coverage over time. Beside the question of how much is archived,
we are particularly interested in what has been archived, which falls in the area of
profiling Web archive collections [100, 101, 102]. Finally, the goal of this study is to
investigate the applicability of Web archiving to preserve representative surrogates
of entities. Even though this particular subject has not been tackled before, other
researchers looked into Web archiving to create preservation copies of other types
or Web resources, such as blogs [33] and social networks [34]. SalahEldeen and
Nelson [35] found a nearly linear relationship between time and the percentage of
lost social media resources.

Research Data and Software

With a focus on research data in particular, independent of the works on Web
archiving, there exist various institutional and domain-specific repositories. An
overview is given by the Registry of Research Data Repositories11 [103]. Many
of these repositories are operated by universities or have been initiated by re-
search institutes. The University of Edinburgh offers a research data reposi-
tory, DataShare [104]. It is divided into domain-specific collections which can be
searched separately or compositely. Harvard’s DataVerse Project12 supplies a Web
service to share, archive and cite research data. RADAR, funded by the German
Research Foundation, pursues a service-oriented approach to provide infrastructure
and services to host research data repositories [88].

A particular focus of our work has been on software as an example for dynam-
ically evolving and frequently referenced objects. Since software has become an
essential part of scientific work, various initiatives for research data management

10https://www.force11.org/about/manifesto
11http://www.re3data.org/
12http://dataverse.org/

https://www.force11.org/about/manifesto
http://www.re3data.org/
http://dataverse.org/
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have begun to focus on this aspect as well. Peng [105] addresses the need for re-
producibility of computational research. Scientific standards for the handling of
mathematical software are mentioned by Vogt [106]. On the one hand, researchers
must be aware of how to develop software effectively. On the other hand, publish-
ing habits must be adapted to archiving, citing and quality-approved software. An
initiative that proclaims this is FAIRDOM13, where fair is an acronym for findable,
accessible, interoperable and reproducible [107]. Micro Archives can be considered
an attempt to establish these principles, not only for software but for linking and
referencing any kinds of dynamic objects through Web archives.

2.2.2 Case Study: Referencing Software on the Web

Software is used in science among all disciplines, from analysis software and sup-
porting tools in the humanities, over controlling and visualization software in
medicine to the extensive use of all kinds of software in computer science as well as
mathematics. However, referencing software in scientific publications has always
been challenging. One reason is that software alone is often not considered a sci-
entific contribution and therefore, properly citable publications do not exist. This
is particularly an issue if the software does not tackle a concrete research question
but was created as tool for various purposes or different kinds of research, such as
standard software like Microsoft Excel. Another issue is, even if the software in
question is well-known or even published, it undergoes dynamics and the version an
article refers to might be different from the one currently available. Furthermore,
a name like Microsoft Excel refers to a product rather than a concrete version
of that software. Also, publications typically deal with the innovation and bene-
fits created by the software as a product rather than a concrete build, version or
setup. However, this very specific artifact may be crucial to reconstruct a soft-
ware instance as in the original experimental setup, to reproduce experiments and
comprehend scientifically published results.

As an example consider the famous bug of Excel 2007, which produced the
number 100,000 in a cell of which the underlying data equaled to 65,53514. To
fix this, the appropriate patch was released shortly after15, which resulted in an
artifact with an updated minor version number, but of course did not update
the major version 2007. Actually, even though 2007 in this case is already more
specific than just the product’s name, it should be better considered a sub product
of the product family Excel rather than a concrete version, since it does not
refer to a concrete artifact. Therefore, to verify results of 100,000 in scientific
experiments with Excel 2007 involved, the precise version number referring to the
exact artifact used in the experiment is required, but very unlikely to be mentioned
in a publication.

In the context of our project FID Math, aiming for a mathematical information
13http://fair-dom.org
14http://blog.wolfram.com/2007/09/25/arithmetic-is-hard-to-get-

right [from 25/09/2007]
15https://support.microsoft.com/en-us/kb/943075 [from 09/10/2007]

http://fair-dom.org
http://blog.wolfram.com/2007/09/25/arithmetic-is-hard-to-get-right
http://blog.wolfram.com/2007/09/25/arithmetic-is-hard-to-get-right
https://support.microsoft.com/en-us/kb/943075
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service infrastructure, we are facing the problem of referencing software with a fo-
cus on all kinds of mathematical applications, tools, as well as services. In the area
of math, software is heavily used for various purposes, such as calculations, simula-
tions, visualizations and more. Very often multiple are combined, while the critical
task is performed by a script, which is software in itself, running inside an environ-
ment like MATLAB, Mathematica or Sage. Settings like these make it particularly
challenging to reference a consistent state of the incorporated software. Further,
the mix of open source and proprietary software introduces an additional challenge
due to crucial differences in many aspects, such as code contributions, licensing,
as well as the question for preservation. To address these difficulties in a univer-
sal manner, we propose Web archiving as a solution to preserve representations of
software on the Web as surrogates for future reference.

Problem and Questions

In an ideal world, the results of every experiment conducted and published by
scholars in their scientific work should be reproducible. This in turn implies that
every software can be recovered in the exact state as used in their experiments.
This either requires a detailed reference to the software’s state and general access
to software artifacts, or, alternatively, ways to freeze and preserve a software’s state
and provide it as attachment of a publication. Both seems unrealistic for practical
as well as legal reasons. While open source projects often suffer a reliable release
process with proper versioning, every committed state is usually precisely identified
by a single hash, such as the SHA used by GIT16. This hash does not only encode
the current state of the software but refers to all previous commits comprising rel-
evant metadata records. By contrast, structured metadata of proprietary software
is often more explicit, with the author being the company behind the software and
each bugfix or patch presumably increases the minor version number of the soft-
ware. Accordingly, both types of software potentially allow referring to concrete
artifacts. The challenge is to establish a unified representation and ways to recover
the referenced software.

Open source licenses commonly allow redistribution, which facilitates sharing
preservation copies with publications to replay experiments. For proprietary soft-
ware this is usually considered piracy. Even more difficult to handle are Web APIs
and services, where the user does not have access to the actual software, but only
to the interface. However, by recovering in this context we do not necessarily mean
to obtain a copy of the software, which is only required for replaying experiments
and in many cases not usable without proper documentation anyway. Recovering
can also mean to get an understanding of the software, for example through its
documentation, source code, related publications or change logs. Already a brief
description can be difficult to obtain though, as referenced software, after many
years, might not even exist anymore.

Since the Web can be considered our primary source of all kinds of information
today, our hypothesis is that most of the information listed above is available on the

16https://git-scm.com

https://git-scm.com
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Web as well. Therefore, a snapshot of the corresponding websites of a software from
when it was acquired for scholarly use, whether by downloading a copy or ordering
in a shop, would constitute a representation of the software at that time. Although
it might not include the artifact itself, it is the most comprehensive representation
we can get, given the practical and legal restrictions. Hence, it can be considered
a temporal surrogate of the actual software.

To realize a Web archiving solution for such a purpose, which enables reliably
referencing software surrogates on the Web in scientific publications, we need to
overcome a number of challenges. The system has to be aware of all relevant
resources of a software and it has to ensure that these resources are preserved at
the time of scholarly use. Towards this, we propose Micro Archives in Section 2.2.4
and our Micrawler tool to create such archives in Section 2.2.5. However, with
existing Web archives we can already create a solution based on the publication
dates of articles using software. In this study we ask the following questions to
analyze the applicability of archiving software surrogates on the Web:

(Q1) How well is software represented by its surrogate on the Web?
(Q2) Which information of software is available on the Web?
(Q3) How many websites of mathematical software are archived?
(Q4) For how many of these can referenced versions from the past be recovered?

Data and Methodology

The primary source for this work was swMATH, an information service for mathe-
matical software17 ((M)SW). Based on the information of SW in this directory, we
analyzed the linked URLs on the current Web as well as in a Web archive, provided
by the Internet Archive.

swMATH in a Nutshell. swMATH is one of the most comprehensive information
services for MSW [108]. It contains more than 12,000 records, each representing
a SW product or product family with a unique identifier, as shown in Figure 2.7.
swMATH is based on the database of zbMATH18, one of the most comprehensive
collections of mathematical publications, with more 110,000 articles referring to
MSW. The biggest challenge for a service like swMATH is to recognize these ref-
erences. In many cases, only a name is mentioned, while a version or an explicit
label as (M)SW is missing. swMATH tackles this with simple heuristics, by scan-
ning titles, abstracts, as well as references of publications to detect typical terms,
such as solver, program, or simply software, in combination with a name.

After new candidates have been detected, they are checked manually to ensure
the high quality of the service. As part of this manual intervention step, additional
metadata, such as the URL of a SW is added. Later on, websites are periodically
checked and outdated URLs are removed or replaced. In case there is no permanent

17http://www.swmath.org
18http://www.zbmath.org

http://www.swmath.org
http://www.zbmath.org
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Figure 2.7. Mathematical Software Singular on swMATH

link that points to a website of the SW, the URLs of a corresponding repository
record or a publication is used instead.

Another important feature for our analysis is the publication list for every SW
on swMATH. Each article in this list is annotated with its publication year. The
publications can be sorted chronologically or by the number of citations an article
has received. In swMATH, publications also serve as source for additional informa-
tion, such as related software and the keyword cloud shown in every record (see
Fig. 2.7).

In order to enhance the functionality of swMATH, one goal is to capture the
dynamics of (M)SW as reflected by the publications over time. We address this
aspect by investigating which information of SW is available on the Web and can
be recovered from Web archives. Of importance for this study are URLs as well
as the publications of a MSW, which are both available through swMATH.

Analysis. As an initial step for the analysis of each addressed question in our
study, we crawled the required datasets using Web2Warc19, resulting in the follow-
ing four collections, listed with the last time of crawl:

• swMATH records (28/01/2016 - 14:14:53)
All 11,785 software pages available on swMATH at that time.

• URLs (18/02/2016 - 18:55:03)
All webpages linked by the 11,125 URLs extracted from the swMATH records.

• Publications (19/02/2016 - 08:30:15)
The top 100 user publications with respect to their number of citations re-
ceived, for all swMATH records. These lists are dynamically loaded into the
swMATH records and constitute therefore separate resource to be crawled.

• Internet Archive (22/02/2016 - 19:38:55)
Metadata of the captures in the Internet Archive’s Web archive for all URLs

19https://github.com/helgeho/Web2Warc (Last commit 73f0934 on Jan 29, 2016 )

https://github.com/helgeho/Web2Warc
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Class Segments

source code code, gpl, lgpl, {R-project}, {github}, {googlecode}, {sourceforge},
{cpc}, {gpl}, {bitbucket}, {gnu}

publications publications, papers, journals, publication, article, journal, doi,
articles, library, bib, reports, {acm}, {springer}, {sciencedirect},
{wiley}, {cpc}, {arxiv}, {googlebooks}, {ieee}, {doi},
{manuscriptcentral}, {tandfonline}, {oxfordjournals}, {citeseerx}

updates changelog, history, news, blog
documentation doc, documentation, manual, api, reference, handbook, handbuch,

referenz, doku, dokumentation, wiki, docs, readme, publications
artifacts exe, zip, gz, tar, download, tgz, files, downloads, ftp, source code

Table 2.8. Segments extracted from software URLs and grouped into
classes.

extracted from swMATH, using theWayback CDX Server API 20. For each URL
we fetched the latest capture as well as the one closest to the time of the best
publication of the corresponding software with respect to number of citations
received.

To analyze these collections, which are small Web archives in themselves, we
employed ArchiveSpark21, a framework for Web archive analysis [9]. This way,
we extracted the data of interest, such as URLs and publication dates from the
swMATH records as well as linked URLs from the crawled webpages. Subsequently,
URLs were analyzed further to identify what kind of resources they point to. We
split the URLs by means of the following rules: 1. the host is split at dots [.], 2. the
path is split at [/.-_], 3. the query string is split at [?=+&:-_]. As indicated by the
segments we obtained through those splits, the URLs were classified as different
resource types. The classes and segments are shown in Table 2.8. Segments in curly
brackets denote whole URLs that match predefined URL patterns, such as GitHub
URLs as denoted by {github}. These, for instance, are an indicator for available
source code. Additionally, documentation and artifacts include all publications and
source code respectively (bold in Table 2.8), since we consider publications to be
documentation, and source code implicitly constitutes an artifact of software. Even
though these heuristics are by no means complete, we tried to cover all cases that
we observed by investigating the URLs manually and are convinced to convey a
representative round-up of the available resources with this approach.

In addition to the listed datasets, we collected in-links from external websites
to the URLs under consideration. These were extracted from the archived German
part of the Web under the top-level domain .de from 1996 to 2013, which we had
full local access to. Due to scope of this dataset, we performed the in-link analysis
only on URLs of domains ending in .de as well, assuming that these are better
represented in the dataset than arbitrary URLs.

20https://archive.org/help/wayback_api.php
21https://github.com/helgeho/ArchiveSpark (Last commit acc5a16 on Feb 17, 2016 )

https://archive.org/help/wayback_api.php
https://github.com/helgeho/ArchiveSpark
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Figure 2.8. Software Surrogates on the Web

Analysis Results

The results of our study answer the questions introduced before. WhileQ1 andQ2
focus on software (SW) on the Web in general, Q3 and Q4 address its coverage by
Web archives. In terms of terminology, the website of a SW, addressed in the first
two questions, generally represents the product or product family. At the same time,
information on a website usually refer to the current artifact of the corresponding
SW. The versions available in a Web archive, addressed by the latter questions, are
considered surrogates for the artifact that was prevailing at the time of capture.

Software on the Web. The first objective of our analysis was to investigate
whether the Web reflects real SW at all and how well webpages as potential surro-
gates represent actual SW (Q1). Our attempt to show such a relation involves the
publications referring to a SW over time as well as the in-links to a SW’s webpage,
which we consider the equivalent to scientific citations on the Web. Figure 2.8a
illustrates this remarkable correlation, with references slightly ahead of the in-links.
The plot has been normalized by the highest number of publications and in-links
for a given SW and aligned by the year with most publications for a SW at x = 0.
It is based on the links extracted from .de pages as well as the number of articles
in a year among the top 100 publications. Due to the available link data, only SW
with URLs under .de was considered.

The fact that the Web lacks slightly behind references in literature suggest that
the scientific use of SW leads to visibility and has a strong impact on its popularity.
This motivates our effort to archive SW’s webpages at the time of publication or
even the time of use for a publication. Without such a preservation copy, links
that were created as a result of a publication may become stale as the SW and
its website evolve and the original reference target cannot be recovered. The same
applies to SW references in articles, too.

Next, we asked the question of which information can be obtained from the
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Figure 2.9. Software Surrogates in Web archives

pages (Q2), based on the segments identified in the URLs (see Data and Method-
ology above). Figure 2.8b shows the total numbers as well as results separated by
popularity with respect to the number of publications referencing a SW. Interest-
ing here is the finding that for around 60% of the analyzed SW, the corresponding
webpage links to some sort of documentation. In many of these cases, publications
are available too, or comprise the documentation. However, this changes for more
popular SW, where a larger fraction of their documentation is independent of pub-
lications. Also, as the plot shows, 50% provide artifacts online, which is again even
higher for popular SW. As a result, this trend suggests SW that is well represented
on the Web is more prominent and more often used. Therefore, it was surprising
to us that we only found source code for around 30% throughout all popularities.
Since only this minority enables a detailed tracing of the development process,
it is even more important to store temporal copies of the SW’s webpages to get a
sense of the development through the available information, such as documentation
or update reports. Overall, we can conclude that SW webpages contain valuable
information and indeed can serve as surrogates of the actual SW.

Software in Web archives. For future work, we are planning to develop strate-
gies and mechanisms to create Web archive collections tailored to SW, which cover
the above presented information of SW on the Web. However, for SW published
and referenced until then, it is valuable to investigate how well existing, generic
Web archives have captured SW surrogates on the Web (Q3). The required data
for this analysis was obtained from the Internet Archive. Figure 2.9a shows that
almost consistent over time the URLs of around 50% of the SW under considera-
tion have been captured in their Web archive. 10% of these were disallowed to be
preserved by the robots.txt of that website.

While 40% of preserved contents is still a relatively satisfying number, it gets
worse when looking at the fraction of archived captures at the time of the top
publication referencing the SW, i.e., the article with most citations (see past in
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Figure 2.10. Archived website of the software Singular, linked from a
publication listed on swMATH, corresponding to the publication year.

Fig. 2.9a). Although we considered full years, only around 20% of the SW pages
were preserved in that period (Q4). However, due to the efforts at swMATH to
replace outdated links, this number may actually be higher but not surfaced by
our study. At the same time, this would mean that many of the original URLs
have been outdated, which in turn suggests a certain development of the corre-
sponding websites. Either way, our findings show the need for a sophisticated Web
archiving infrastructure as part of the scientific SW management process, which
assigns preserved material on the Web assigned to a specific SW or its reference in
a publication, rather than URLs.

Another large portion that is not covered by the number of pages archived in
the past are those webpages that were archived shortly before or after the year of
the publication. The good news is, this gap is very small as shown in Figure 2.9b.
Most pages were captured in the exact year and the remaining were preserved
closely around this time with decreasing numbers further away from the year of
publication. Thus, by relaxing the time to identify a SW’s surrogate in a Web
archive to a couple of years around a publication, we can recover even more. Al-
though the representativeness becomes less accurate this way, it can still be helpful
to comprehend SW references or reproduce experimental results.

Not exactly surprising, but notable is the fact that almost all pages with
archived captures in the past have changed according to the hash/digest of their
archived record (see Fig. 2.9a). This motivates to preserve those copies for fu-
ture reference. As an initial step and as a result of this study, we have integrated
temporal links to software mentioned in publications in swMATH. Based on the
publication year of the articles listed in swMATH, links are added to the corre-
sponding archived website of a mentioned software along with a status indicator
showing whether a snapshot is available in that year or in another year or not at
all22. As a viewer, we use an adapted version of the Tempas TimePortal, the result
viewer of Tempas v2 (cf. Sec. 2.1), as shown in Figure 2.10 [109]. It displays the
archived page in the context of the publication it was mentioned in. In addition to

22https://blogs.tib.eu/wp/tib/2017/05/19/what-does-the-internet-know-about-
the-development-of-software

https://blogs.tib.eu/wp/tib/2017/05/19/what-does-the-internet-know-about-the-development-of-software
https://blogs.tib.eu/wp/tib/2017/05/19/what-does-the-internet-know-about-the-development-of-software
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that, we add a bar with links detected on the captured page, categorized according
to the classes in Table 2.8.

2.2.3 On the Coherence of Web Archives

We have investigated two use case scenarios for which Micro Archives would imme-
diately create a major benefit in their scientific use, i.e., blog articles and software.
The question we raise is: How complete and coherent is the archived Web with
respect to related resources linked on the corresponding webpages? [110]. With the
concept of Micro Archives and our tool Micrawler, shown in Figure 2.11, we present
an approach to improve this coherence by making sure for an object or entity
cited today, all related resources are archived today as well, resulting in a coherent
collection to represent the subject entity.

Datasets and Methodology

The retrospective analysis of blog articles was done using the TREC Blogs’08 23

collection. This corpus consists of 28,488,766 blog posts, collected between 2007
and 2008 for the TREC 2008 Blog Track. Hence, we can assume the blog articles
to be published during that time period. Although some older ones are included
as well, there are definitely no posts composed later than Feb 2009.

As it is more difficult to relate software to a specific point in time, we study its
state as of today. For this analysis, we collected all 22,022 URLs24, each correspond-
ing to a single software, as listed in swMATH’s software catalog (see Sec. 2.2.2).

All webpages linked from any of the processed URLs are considered related.
Although maybe not complete, we found that many software websites link to cor-
responding documentation, artifacts, source code and other related artifacts from
their homepage [5]. These resources were gathered from the archived snapshot of
the corresponding software or blog page. In case of software, we picked the latest
captures, and for the retrospective study of blog articles, we picked the earliest
snapshot that was available in the Internet Archive’s Wayback Machine.

As the process of retrieving an archived snapshot for an URL with all its linked
resources is quite time-consuming, we limited our analysis to a random sample of
5,000 objects from each dataset. A single unit of 1 represents a completely archived
object with all related resources, the percentage is relative to these. Partially
archived objects would be represented by a corresponding floating-point unit. For
better readability, the plots have been limited to the 2,134 blog posts and 4,074
software websites for which at least the authority page available, i.e., the actual blog
post or representative webpage of a software. Together with the related sources we
ended up with a total of 243,336 URLs that we had to fetch for blogs and 123,060
URLs for software, resulting in 48 related resources per blog article and 24 related
resources per software on average.

23http://ir.dcs.gla.ac.uk/test_collections/blogs08info.html
24state at Dec 7, 2017

http://ir.dcs.gla.ac.uk/test_collections/blogs08info.html
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Figure 2.11. Micrawler Screenshot

Another fraction was covered by the Web archive but disallowed themselves
from being archived through a policy specified in their robots.txt. For these, the
corresponding objects could not be studied, neither can they be captured with our
proposed approach. There are depicted in our plots by the gray bar at the top.
For an authority that is archived, but that links to pages that are disallowed, these
related resources were ignored.

Each plot contains four lines to show the coverage of the studied objects in the
Web archive over time: resources represents an object as fraction of its archived
resources, authority considers the authority pages only, related denotes the frac-
tion of resources for an object only if the authority is archived, and complete
shows the completely archived ones.

The times shown in the retrospective blog analysis in Figure 2.12 are to be
read as when the resources were first archived. From this we can derive the time it
takes from publication to the post along with its related resources being archived
completely. In contrast, since the analysis of software in Figure 2.13 was conducted
from a perspective of today back in time, it should be read from right to left. Hence,
they are to be interpreted as the latest available state or version of a software and
related resources in the studied Web archive.
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Figure 2.12. Web Archive Timeline: Blogs

Results: Blogs

The timeline in Figure 2.12 shows the results of our study of blog articles. Due to
the time of the dataset, which was collected around year 2008, we can observe a
major growth in the archive around this time as expected. However, as shown by
the resources line, some of the related resources were already preserved long before
the blog posts were published, e.g., in 2006 around 5% of the links in an article on
average. This makes sense as they have to be online before they are referenced by
a blog.

The steep increase of the archived resources to 25% together with the growth
of the actual articles (authority pages) indicates that the blogs reference rather
recent resources, assuming that they were captured by the archive not too long
after publication. This is encouraged by the fact that they were archived slightly
before the blog posts, hence, the archive discovered them not through the articles
but independently of them.

Once the authority URLs are archived as shown by the dashed line, the related
resources go up very closely as well, suggesting that these were indeed already
archived before that point. However, although this is a positive finding, it only goes
from around 20% at the beginning of 2009 to slightly over 30% today on average for
the resources related to the archived authorities, an unfortunately small fraction.
The gap to the completely archived articles stays rather large and only reaches
about 10% today. This makes us wonder whether actually a coherent and useful
impression of the archived blog articles with their hyperlinked references can be
obtained from the studied Web archive.

Moreover, after the big increase between 2008 and 2009 still only less than 25%
of the blog articles are archived. From there, the lines are growing very slowly, and
even today only 35% are preserved with another roughly 10% that were disallowed.
Overall, these numbers are not very satisfying.

The use of Micrawler for on-demand archiving of blog articles along with their
related resources whenever cited would bring the number of completely archived
objects much closer to the number of archived authority pages, providing a more
holistic retrospective view onto the blog post as in its referenced state.
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Figure 2.13. Web Archive Timeline: Software

Results: Software

Software on the other hand was studied from its current state, going back until
the latest snapshot of a resource had been archived. Immediately noticeable in
Figure 2.13 is the larger fraction of disallowed software websites of around 20% as
compared to the 10% of disallowed blog articles. However, very positive is the steep
growth on the very right of the timeline, resulting in almost 50% of all software
authority websites archived already only about one year back from now, at the
beginning of 2017. That shows, if an author cites one of this software in his work
today, the corresponding website’s version found in the Wayback Machine is at
most one year old. Unfortunately, there is not much gain by going back in time
and even in 2010 and before not more than slightly over 60% are archived overall.

Similar to blogs, the line of complete snapshots is rather low. Hence, from
the 50% software sites archived one year ago, for only less than a half are all
related resources archived as well. On average, only 40% are preserved at that
time as shown by the line of related resources. In the case of software, this is
even more severe than for blogs. Blog articles carry a lot of meaning and content
themselves, however, authority page of software are usually landing pages that
link to the actually meaningful documentation, news, code, etc. The only valuable
information on such a software page is often a brief description as well as metadata.

A noticeable difference to the timeline of blogs is that the lines of overall re-
sources and related resources are much closer at any time. In the case of this time-
line, which is to be read from the right, that means only a few related resources are
recaptured more recently than the corresponding authority page, indicating for the
majority of software, the authority page is preserved more frequently than their
resources. Other than for blogs, it is quite likely that these are only discovered
by the archive crawler through the software websites. That means in practice, the
information found on such a landing page are usually more up-to-date than the
related resources found by following the links on the archived snapshot.

A snapshot of the software’s representation on the Web created using Micrawler
would help to improve this situation. It can make sure that for a software cited
today all related resources are archived today as well, constituting a rich, complete
and coherent digital representation of the software itself.
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2.2.4 Micro Archives as Temporal Object Representations

As our case studies have shown, the coherence among related resources in Web
archives is not sufficient to reference a consistent state of a represented object.
This is what we intent to improve with the introduction of Micro Archives.

There are several applications in which such logical or semantic connections
of Web resources that belong to an object or entity would be useful. The most
immediate scenario is the use of Micro Archives for referencing rich representations
of cited objects in literature or digital works as part of the scientific workflow.
Additional use cases that would benefit from Micro Archives are discussed in the
end of this Section (see Opportunities below).

The following steps outline a common workflow to create and cite a Micro
Archive. Ideally, this should be done by the authors who cite some object or entity
in their work at the time of reference. In case of a blog posts, that is when the
article is read, or in case of software, at the time when it is downloaded, so that
the used version matches the one represented by the cited Micro Archive.

Specifying Micro Archives

In order to use a Micro Archive as digital representation of any object, it first needs
to be defined. Typically, this should not be done by the users manually to avoid
an additional overhead to their workflow. However, depending on the concrete
application, anyone can specify a Micro Archive with the required set of resources.
Resources are identified by their URL along with labels and possibly comments. In
addition, a Micro Archive specification should include the name of the represented
object as well as additional properties, such as the type, e.g., blog, software, person,
company, etc. (see Fig. 2.14). Such crawl specifications can be shared, refined as
well as reused. Predefined specifications can be provided or extracted from suitable
services, such as repositories or directories, accessible through a dedicated link to
cite included items. In case of software, this could be any service that is aware
of the relevant URLs, such as a software catalogs like swMATH (see Sec. 2.2.2).
A click on this cite link could immediately trigger the archiving process (using a
software like Micrawler, see Sec. 2.2.5). To create a Micro Archive of a blog post,
the specification can be automatically derived from the links in the post itself.

Crawling / Archiving

Based on the given crawl specification all related resources should be crawled and
archived at the same time or with as little delay as possible. Whether only the
given URLs are captured or used as seeds for a broader crawl depends on the type
of application. In case of blog articles, it might be sufficient to store only the article
itself as well as the directly referenced pages. However, in case of software it makes
sense to go deeper as the URL of a documentation typically does not contain the
entire document but links to chapters and sections, which should also be preserved.
The archiving process can be performed by any Web archive, treating each resource
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Figure 2.14. Micro Archive Specification Screenshot

as an independent item. Depending on the type of resource, even different archives
may be used, like Web archives for webpages, but more software-specific archive
for the raw source code. The resulting Micro Archive now serves as an additional
layer that connects these captured resources and takes care of a coherent state
among them. Hence, an extended version of the original specification, labeled with
a timestamp and pointers to the corresponding snapshots in the Web archive, needs
to be stored as well, independent of the connected snapshots.

Presentation / Citing

Once created, the Micro Archive is anchored to the time when it was crawled and
represents the corresponding object or entity through the resources that were part
of the specification. For future reference, a unique handle that is assigned to the
Micro Archive, would now be sufficient to cite the preserved state of the represented
object. This may be a short URL or more specific identifiers, such as a DOI or
others. These would point to a landing page that nicely presents and renders the
Micro Archive for the users. Such a landing page lists the state of each capture,
whether it was successfully archived or missed, as well as additional metadata from
the archive, such as the exact timestamp of the snapshot (see Fig. 2.15). Further,
depending on its completeness, the temporal representation of the corresponding
object through the included resources is quite rich in information and allows for
additional analyses or visualizations. Since the included resources by definition
belong and represent a common object, metadata can be extracted fairly easy. If
the type of the object or entity is known, this analysis can be even tailored to the
specific type. Similarly, more sophisticated queries may be processed dynamically
over the contained resources to obtain even more complex information, such as the
author of a specific piece of code in a software, which may not be included in a fixed
set of meta information that are traditionally used as digital object representations.
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Figure 2.15. Micro Archive Screenshot

Opportunities

While the primary and most obvious use case scenario for Micro Archives is the
temporal representation and reference of objects or entities, we see a lot of potential
in such microscopic collections in establishing the missing semantic and logical link
among the resources on the Web combined with a temporal embedding:

Supporting Web Archives. An infrastructure around Micrawler that allows
for sharing and maintaining crawl specifications as well as existing Micro Archives
in combination with a headless implementation that can be triggered programmat-
ically may support Web archives by ensuring coherent snapshots at relevant times.
For instance, such a database that is aware of the resources related to an entity
would enable publishers or libraries to trigger a snapshot whenever a mention of
the entity is detected in a new publication, e.g., all websites and social media ac-
counts of a person can be captured whenever he or she is mentioned in the news.
Web archives itself can incorporate this information to prioritize related resources
of a page at crawl time as well as use it to improve their access capabilities.

Temporally Relevant Collections. A huge issue in the research field of
Temporal Information Retrieval [36] and temporal Web archive search [6] is the
lack of a ground truth dataset for temporally relevant search results of a query.
Micro Archives as a first step towards structuring the Web as well as Web archives
in a semantical way constitute exactly such collections for the corresponding enti-
ties as queries across time. Hence, a central, curated database as described above,
which allows for the retrieval of existing Micro Archives along with the snapshots
of related resources would be of importance for these applications and finally en-
able proper evaluation of temporal retrieval systems. In addition to this, these
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collections can also be of direct use for the users of Web archives to discover lost
webpages from the past.

Structuring the Web. Micro Archives add a semantical as well as a logi-
cal structure to Web archives, which represent single entities or objects at differ-
ent points in time. The identification of such structures along with the existence
of archived snapshots for corresponding resources opens up new opportunities in
studying the Web. For instance, Web graphs that are typically constructed based
on single URLs, hosts or domains, may now be formed according to objects and
entities based on their related resources. Scientists would be able to study re-
lations among entities not just based on textual information, which are hard to
extract, but based on related resources across time. The coherent snapshots ensure
a temporal coverage and realistic topologies in the sub-graphs, which are currently
widely broken due to the present incompleteness of Web archives.

Rich Information. A very ambitious and visionary aspect of Micro Archives
is the complete reconstruction of represented entities. Wikipedia is a great example
of how entities can be represented on the Web. It is not only used for reading and
learning about facts, but even to link and disambiguate entity mentions on the
Web or in machine learning tasks. However, Wikipedia articles are not written
from scratch, they are rather compiled of information found all around the Web,
indicated by the many references in these articles. Thus, collections and temporal
snapshots of related resources that are representative for an entity may allow for
automatic generation of such articles or semantic representations like in knowledge
bases. Furthermore, these representations are temporal and thus, can reflect the
evolution of corresponding entities.

2.2.5 Micrawler Reference Implementation

Micrawler (Micro Crawler) is a reference implementation and proof-of-concept pro-
totype to perform the aforementioned steps of creating and citing Micro Archives.
It runs the entire pipeline from specifying over crawling to citing and analyzing Mi-
cro Archives. Micrawler is a Web application powered by a set of configurable server
modules, which are not part of the project itself, however, we provide reference and
demo implementations for each of them together with Micrawler. Figure 2.16 gives
an overview of the steps performed by Micrawler and how these connect to the mod-
ules as explained in the following. The codebase of Micrawler is open source and
published under https://github.com/helgeho/Micrawler. The running proto-
type has been deployed to http://tempas.l3s.de/Micrawler.

1. Spec Proxy: A crawl specification (spec) can be provided to Micrawler in two
ways: 1. in a textual form as list of URLs prefixed with labels and additional
properties in a predefined format, 2. as a single URI/URL that either points
to a textual spec or to a resource from where a spec can be extracted. In the
latter case, Micrawler would send the URL to a spec proxy service, which is
in charge of deriving the textual spec from the given source (see Fig. 2.14).
Our demo implementation currently supports the following identifiers:

https://github.com/helgeho/Micrawler
http://tempas.l3s.de/Micrawler


2.2 Temporal References and Links 53

Figure 2.16. Micrawler Architecture and Extension Points / Related Ser-
vices

• If the given URL refers to a software in swMATH (see Sec. 2.2.2), a
corresponding spec is generated from the included software website and
linked resources.

• If the given URL refers to a Wikipedia article, a spec is generated for
the corresponding entity, containing all external links.

• If the given URL points to an archived resource in the Wayback Machine,
an extended spec with the timestamp of the snapshot is created and all
linked resources are included. This is treated as a final Micro Archive
and hence, the crawling step is skipped.

• As a fallback, e.g., for blog articles, all linked resources from the given
URL are extracted and included in the spec. In this case, it neither has
a name nor a type, which can be manually added though.

In the future we plan to provide a more sophisticated spec proxy service. For
instance, we would like to support widely used blog platforms, like Wordpress,
so that the title of an article as well as the type is automatically included
in the spec. Further, we are planning a dedicated platform to create, share
and maintain Micro Archive specifications for various entities. This way, we
would achieve a much cleaner set of URLs for an entity with more descriptive
labels than what we currently get from the anchor texts.

2. Crawl Queue: Once the Micro Archive is specified so that it well-represents
the corresponding object, the spec is sent to another service that generates
the queue for the crawl. In the default case, this is exactly the list of URLs
as they appear in the specification, which is sufficient for the most common
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cases. However, this hook allows for additional customizations and special
treatments of certain resources. For instance, if a URL refers to a documenta-
tion of some software in a known format, automatically all subsequent URLs
of this documentation could be added to the queue and archived as well, while
only the homepage of the documentation will be part of the spec to keep it
flexible for future reuse. In our demo implementation, the only extension we
add is the GitHub metadata API in case the spec contains a GitHub URL.
This way it is ensured that all metadata of a software is preserved and can
be extracted in the analysis later.

3. Archiving/Crawl Service: Each URL in the queue is now sent to an
archive. A requirement for this is that the archive provides an on-demand
archiving service, such as the Save Page Now feature of the Internet Archive’s
Wayback Machine, which we use in the current implementation. Micrawler
allows this to be configured in a very flexible manner. Either every URL
will be sent to the same archive or special cases for certain resources can
be defined. This way it is possible to tailor the archiving process based on
the type of resource. While standard webpages are archived by the Internet
Archive, a GitHub repository may be sent to a specialized service, such as
Software Heritage25, that does not only preserve the GitHub website, but also
copies the raw source code from the repository. In our currently deployed
version, all resources are archived at the Internet Archive.

4. Archive Meta Service: After all resources in the queue are sent to the
respective archives and captured, the Micro Archive is created by enriching
the spec with the current timestamp as well as the metadata about each
snapshot of the included resource. The archive meta service is the one that
retrieves these meta information. It double-checks each archived URL against
the previously triggered archive and obtains additional information from the
index. Hence, this service has to match to the configured archiving services.
We currently use the Wayback CDX Server API 26 (Crawl Index ) for this,
which can be queried for the exact timestamp as well as status information
of any resource in their archive.

5. Analyzers: The timestamped spec, enriched with meta information from the
archive, constitutes the final Micro Archive. The included resources can now
dynamically be analyzed and additional information about the represented
object may be derived. For this purpose, Micrawler enables the configuration
of analyzer services. These can be defined per type to treat Micro Archives
for different types of objects differently, as the required mining and analysis
processes of may vary among them. For instance, an analyzer for a Micro
Archive that represents a software should look for a version number, which
is likely to be contained in one of the included resources. While the same
method, in case it identifies a version number in a blog post or its related

25https://www.softwareheritage.org
26https://archive.org/help/wayback_api.php

https://www.softwareheritage.org
https://archive.org/help/wayback_api.php
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resources, probably does not constitute metadata of the blog post. If no
analyzer is configured for a specific type, this step is skipped.

In our currently deployed demo, Micrawler is only connected to a software
analyzer. The analyzer receives the full specification with information about
the archived snapshots and returns additional data about the software. In
case a GitHub repository is part of the Micro Archive, it checks for a snap-
shot of the corresponding GitHub metadata API being archived as well and
extracts the information from there. If that is not the case, it picks the
resources labeled as home and tries to identify version information on its
content. Finally, the identified data is returned to Micrawler and displayed
in a structured table (see Fig. 2.15). In the future, much more sophisticated
visualization methods for more complex information or even dynamic queries
will be possible.

6. Persistence Provider: In order to share and cite a Micro Archive, it needs
to be stored persistently and assigned some handle or identifier to look it
up. Although every single resource in the Micro Archive has been captured
and stored permanently, the added value is in the semantic or logical con-
nection among the resources. The final timestamped crawl specification with
the snapshot information for each included resource is an exact description
of this and could be used to share it. However, it is quite long and verbose.
Therefore, Micrawler provides an option to cite a Micro Archive. This sends
the spec to a persistence provider, which permanently stores the spec and
assigns a unique identifier that can be used to refer to the object or entity
represented by the Micro Archive. Currently, we store the enriched specs in
a text file on our servers and assign it a hash. This is not guaranteed to be
permanent though and should not be used in production. In the future we
plan to connect a real persistence provider or use the Internet Archive’s in-
frastructure to store the Micro Archive layers as well. Based on the generated
handle, Micrawler also provides BibTeX and BibLaTeX records to facilitate
the use of Micro Archives in scientific publications as follows [111]:

@misc{SageMath,
title = {{SageMath}},
type = {software},
howpublished = {\url{http://tempas.l3s.de/micrawler/permalink/8bcbcec}},
note ={Archived using Micrawler: 2018-01-10T09:03:35.000Z}

}

7. Viewer: To view the archived resources of a Micro Archive, they need to
be replayed and rendered with all its embeds and assets from the archiving
service. Micrawler shows a viewer window for this, in which it loads the
resource from the archive, using a configured viewer. Web archives commonly
use an instance of the Wayback Machine for this, which can be called by
providing the URL and timestamp of the resource to load. Depending on
which archive is used or whether different types of archiving services are used
for different kinds of resources, the corresponding viewers to be used can be
customized.
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2.2.6 Conclusion and Outlook

As shown in our case study on software, the Web reflects software to a remarkable
extent, with documentation and artifacts on a considerable number of webpages.
Hence, the Web can indeed serve as surrogate of actual software. Therefore, as a
first step, we have, in collaboration with swMATH, established temporal links to
already archived websites for all software on their platform, which is mentioned in
scientific articles based on the publication date.

Unfortunately, we found that only for about a half of the analyzed software,
the corresponding webpages are currently preserved by an existing Web archive.
Further, as we our second study on the coherence of Web archives has shown, only
10% of the studied blog posts and roughly 30% of the analyzed software websites
are archived completely, i.e., all linked resources are captured as well. Hence, to fix
this in the future, we propose establishing new infrastructures to actively archive
webpages as surrogates of software as well as other entities at the time of use or
reference. With the concept of Micro Archives, we presented a novel approach to
increase these numbers in the future to enable coherent citations. With Micrawler,
the author of an article can create such Micro Archives on demand and be provided
with a handle to reliably reference these rich object representations. Eventually,
explicit temporal references will improve the management of dynamic objects in
scientific publications as well as elsewhere on the Web.

Towards this, we want to establish an infrastructure around Micrawler that
allows for sharing crawl specifications and existing Micro Archives. We would like
to integrate better persistence providers to assign guaranteed permanent identifiers,
such as DOIs. Further, a headless implementation of Micrawler would allow for
programmatic on-demand archiving to be triggered by third-parties in order to
support Web archives and ensure coherent snapshots in the form of Micro Archives.
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Analyzing Archival Collections

From a data storage perspective, Web archives commonly consist of two data types:
(W)ARC and CDX. WARC is the main format for storing Web archives. It has been
specifically designed for the purpose of storing Web resources as well as the requests
of a Web archive crawler along with attached headers and meta information. Mean-
while, this has also been standard by ISO1. WARC is a specialized version of the ARC
format, which is a general-purpose format for digital archives. Since ARC was used
in the early days of Web archiving to store Web resources as well, it can be still
found in the wild, especially when working with older collections.

CDX2 refers to the crawl index, which is not standardized but can be considered a
de-facto standard, since it is used by the Wayback Machine and is widely available
for most Web archives. CDX records are sorted, lightweight representations of the
records in a Web archive or the corresponding (W)ARC files. They consist only of
meta information, such as the type and status of an archived resource and allow
for quick look-ups and accesses to the corresponding captures.

These metadata records turn out to be very valuable for both, profiling or
analyzing Web archives or the Web of the past at a high, content-agnostic level, as
well as for studying parts of the archived contents in depth, by enabling efficient
filtering and pre-processing. In the following Section 3.1, we showcase their utility
by means of a retrospective study on the dawn of today’s popular domains of the
archived German Web over 18 years, with a focus on age and size, purely based on
CDX records. Since CDX records are much smaller than the corresponding archives
and not subject to legal reservation like the actual contents may be, these files can
be easily shared and facilitate the reproduction of similar experiments, which we
aim for with the presented framework of formulas and definitions.

With ArchiveSpark, we then present a tool in Section 3.2 to process and analyze
archival collections beyond metadata, that makes use of CDX records to enable more
efficient access to the captures of interest. Its modular architecture can be flexibly

1https://www.iso.org/standard/44717.html
2http://archive.org/web/researcher/cdx_file_format.php
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extended with new functionalities as well as to support different data sources and
types, so that it can be even used for other kinds of archives, such as books and
journals.

3.1 Retrospective Analysis of Crawl Metadata

The Web is in a state of continuous change, with websites and pages being
continuously added, deleted and modified. As previous studies have reported,
the Web has been growing and evolving substantially over its lifetime. Re-
searchers have measured and characterized the nature and degree of change in
the past [50, 51, 52, 53, 54]. However, these studies primarily focus on content or
structural change rates of rather small collections of websites for time periods from
a few weeks to a couple of years. One of the interesting findings of such analyses
is that a significant part of the changes on the Web are the creation and deletion
of pages [53]. With this work we aim to extend those studies with a comprehen-
sive retrospective analysis with a strong topicality, by investigating today’s most
prominent part of the German Web over an 18-year period from 1996 to 2013. We
collected the most popular domains from a diverse set of categories on Amazon’s
Alexa ranking3 and analyzed on the German Web crawls for this period preserved
by the Internet Archive. This makes it the longest study of Web evolution so far.

The dataset gives us the unique opportunity to analyze the evolution of what
is popular on the Web today and how those websites have evolved from their
early days. At the same time, it puts us into a role similar to an archaeologist,
who studies the past only based on what has remained. What remains of the
Web in archives is influenced by crawling policies, which are limited due to the
available computational resources. Furthermore, not only the Web itself but also
the crawlers are subject to evolution. Therefore, we will discuss our assumptions
and findings on the Internet Archive dataset in a separate section, which by itself
is another interesting contribution of this study and shows the representativeness
of the archive with respect to the most popular websites by comparing the growth
to the actual Web in terms of registered domains. In this respect, it is interesting
to see that those websites are relatively well covered, even though some years back
they might not have been as popular as today. This is a positive observation and
an important trait of a Web archive since today’s popular websites are likely to be
looked up by users of an archive from the past as well.

In the following we will use domain synonymously for a website including its
sub-domains, e.g., google.de and news.google.de belong to one website. In contrast,
webpage is used interchangeably for URL and denotes a single page of a website.

The questions we ask in our study are inspired by the popular belief about the
structure of the Web, but with a focus on the prominent part that people care
about most today in Germany:

• Are popular websites growing old and if so, how can we characterize it? We
3http://www.alexa.com

http://www.alexa.com
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Evolution and Domain Age statistics

alived(pi) # URLs of d alive in period pi (were born before ti and did
not die before ti+1)

bornd(pi) # URLs of d born in period pi (were born after ti (included)
and did not die before ti+1)

diedd(pi) # URLs of d died in period pi (were born before ti and died
before ti+1)

flashedd(pi) # URLs of d born and died in period pi (were born after ti
(included) and died before ti+1)

sized(pi) Cumulated sizes of URLs of d at the end of period pi (all
URLs that were alive or were born in period pi)

born_sized(pi) Cumulated sizes of URLs of d at the birth of newborn URLs
in period pi

agesd(pi) Ages in months of URLs of d at the end of period pi (all
URLs that were alive or were born in period pi)

URL Age statistics

countd(pi) # URLs of d in period pi / at age i (were born before ti and
reached age i)

diedd(pi) # URLs of d that died in period pi / at age i (were born
before ti and died before ti+1)

sized(pi) Cumulated sizes of URLs of d at the end of period pi (only
of URLs that did not die in period pi)

died_sized(pi) Cumulated sizes at the death of URLs of d that died in period
pi

died_birth_sized(pi) Cumulated sizes at the birth of URLs of d that died in pi

Table 3.1. Properties Used in the Statistics

were able to confirm what other researchers found earlier: the majority of
pages on the Web are rather young. In addition, however, we found that
the small long-living fraction contributes significantly to the age, which is
increasing.

• How has the size of popular websites changed over time? In terms of the
volume of a domain, which we define as the number of URLs, we found the
growth has been exponential up to now. This is an interesting finding, which
we believe is true for the Web in general. Regarding actual sizes, not just
existing pages grow, but also newly created ones are larger every year.

• Do the popular websites from different categories (like business, universities
and technology) have different growth rates? In almost all the conducted
analyses we found distinct differences among the considered categories. We
find that 75% of the popular university domains of today have been around
since 1999 whereas not even 20% of the popular game websites of today were
present back then.

Before we present the results of our analysis (Sec. 3.1.3 and 3.1.4), we pro-
vide a detailed description of the experimental setup and the measurement metrics
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used in this study (Sec. 3.1.2). Since all presented properties and statistics are
computed purely on metadata from a crawl index (CDX), the same analysis can
be replicated by other researchers with access to such an index. Using the same
definitions (Table 3.1) would allow comparing among datasets, e.g., different na-
tional domains. The national top-level domain .de constitutes the largest fraction
of German-speaking websites, a non-negligible portion of the Web, which we ana-
lyze with a focus on the most popular part. The study ends with an analysis and
discussion of this dataset as provided by the Internet Archive (Sec. 3.1.5).

3.1.1 Related Work

Studying and characterizing change and evolution in the Web falls into the broad
field of Web Dynamics. Change on the Web can be differentiated into content
change and structural change in terms of the Web graph as well as the creation
and deletion of webpages. We investigate the latter together with the growth of
webpages as a result of content change, which is not analyzed in depth though, as
we operated purely on metadata.

By contrast, the earliest studies in this field mainly investigated content changes
with respect to change rates. Already in 2000, Cho and Garcia-Molina [50] analyzed
720,000 pages over 4 months in a study motivated by the question on how to build an
effective incremental crawler. They found that 40% of them change within a week
based on their checksum. Similar to us, they focused on popular pages, determined
by computing PageRank. In a similar study from 2003, Fetterly et al. [51] analyzed
150 million webpages over a period of 11 weeks with more sophisticated features.
They found that 67% of the pages never change, 20% are only minor text changes
and 10% of the webpages have changes in the non-textual part. Only around 4%
of the webpages report medium to major changes to their text content. The first
study in this respect that covers multiple years was done by Koehler [52] in 2002.
They analyzed a small sample of 360 pages spanning more than four years from
1996 to 2001 and showed that navigation pages have a better survival rate than
content pages. A more fine-grained content analysis was done much later by Adar
et al. [54] in 2009, taking hourly and sub-hourly changes into account. They studied
page level content changes and tried to capture term-level dynamics on a sample
of 55,000 pages with different popularities and different revisitation patterns over 5
weeks. They found that 66% of the visited pages changed during the period under
consideration on average every 123 hours.

From a search engine perspective, back in 2004, Ntoulas et al. [53] analyzed the
link structure in addition to content of 3-5 million pages over one year. They fo-
cused on popular websites once again, according to Google’s directory, and observe
that 8% of the pages are replaced by newly created ones every week. Out of the
remaining about 50% did not change at all during the year under consideration.

With a focus purely on structural change, Baeza-Yates and Poblete [112] in-
vestigated the Chilean Web (.cl) domain over five years from 2000 to 2004 with
questions similar to ours. During this period, their collection grew from 600,000
to 3 million pages. Other studies also focused on national top-level domains, such
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as .uk, which was studied by Bordino et al. [113] in 2008 as well as in a recent
study from 2014 by Hale et al. [55]. Bordino et al. [113] analyzed a time-aware
Web graph consisting of 100 million pages over one year with monthly granularity.
Hale et al. [55] focused on the academic part of the UK under .ac.uk from 1996
to 2010 and investigated link patterns. As in our study their collection was also
crawled and provided by the Internet Archive. Another recent work by Agata et al.
[56] analyzed a collection of 10 million mainly Japanese pages in 2001, which was
collected by the Internet Archive as well and is also based on metadata. They
report a webpage’s average life span of a little more than three years. The most
recent study with a national focus was published by Alkwai et al. [57] in 2015.
They analyzed around 300,000 Arabic pages in terms of different criteria, such as
their coverage on Web archives.

Our work differs from these previous analyses by having a larger temporal
coverage as well as new objectives. To this effect, we carry out studies which
compare observations across years showcasing evolution of websites in terms of
age (see Sec. 3.1.3) and growth both in size and volume (see Sec. 3.1.4).

3.1.2 Setup and Methodology

In our analysis we focused on the aging as well as growth of today’s most popular
German websites based on a Web archive over 18 years. All information needed for
such an analysis are available in the CDX metadata index, which most Web archives
maintain with their collections.

Dataset Preparations

Our dataset has been provided by the Internet Archive in the context of the
ALEXANDRIA project and consists of all their archived text records from the Ger-
man Web, as defined by the .de top-level domain, from 1996 to 2013.

German Web CDX. The so-called CDX files that we used for our investigation are
manifests consisting of all meta information about the crawls in a space-separated
format, with one line per capture, i.e. a snapshot of one URL at a given time. The
corresponding line in the CDX file looks as follows:

<canonical_url timestamp original_url
mime_type status_code checksum redirect_url
meta_data compressed_size offset filename>

Of importance for this work are the URL, the timestamp, the status code, as
well as the size. As the CDX files that we used for this analysis only include text
files, such as HTML, we could ignore the mime type. Please note that the sizes
provided in the CDX files corresponding to the records in the archive, compressed
in GZip format. Therefore, the analysis on sizes does not present the exact sizes
of the websites, but trends over time.

In order to handle the large amount of data, we created an index based on
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the domains as keys. Each domain points to a list of its URLs, where every URL
has attached a sub-list with all its captures in the archive in chronological order,
including the data as shown above. This allows quick access to all URLs and
captures of any available domain.

Today’s Popular Domains. There are three types of Web archives. While the
first type attempts to preserve a certain part of the Web completely, for instance
a national top-level domain, the second type is more focused, aiming for a certain
topic or event. Those broad as well as topical crawls are typically done once or
periodically without the attempt to capture all changes in between or to preserve
the dynamics of the Web. In contrast to that, the third type of Web archives
constitutes continuous crawls over a longer time period, which does not claim to
preserve everything, but the most important parts according to a certain crawling
strategy. This strategy might even change over time to adjust the crawler for a
better coverage of a certain aspect. For instance, a typical strategy is to revisit
frequently changing pages more often. Therefore, the temporal coverage of some
websites in the archive may be very good, while others are missed completely. This
selective crawling introduces a certain bias to the archive, which however is difficult
to track retrospectively.

Our collection is of the third type, plus, it includes data donations, which
were crawled by third-party organizations. For that reason, it does not cover the
entire Web, but constitutes a sample biased by the different crawling strategies.
Accordingly, a random sample of the collection would again be biased and it will
require further research to analyze what the collection actually consists of to create
a more representative sample of the entire German Web.

Therefore, instead of sampling we decided to focus on a well-defined subset,
which in addition is inherently substantial for users as well as Web crawlers: the
today’s popular domains from their early stages in 1996 up to now (2013 to be
exact). These websites are of interest for most readers and at the same time
have the biggest impact on upcoming research on Web archiving, crawling, IR and
related areas, since those disciplines typically focus on rather prominent websites.
Also, as we will show later (see Sec. 3.1.5), this subset nicely represents the actual
growth of the Web in terms of registered domains.

The selection of domains was taken from Alexa by fetching the top websites
of different categories, like Business, Society, Sports and others. To match our
dataset, we only picked those categories listed under German 4. In addition to the
top categories, we also took two sub-categories for news and universities, which
we considered especially relevant. As our dataset only consists of domains ending
with the German top-level domain .de and not all German websites listed on Alexa
are under .de, we filtered out those websites with another top-level domain. Out
of the remaining, we picked the top 100 from every category (or less for smaller
categories, like news) to form our dataset. The last time we retrieved the rankings
from Alexa was on July, 10th 2014 at 09:26 GMT+1.

4http://alexa.com/topsites/category/Top/World/Deutsch

http://alexa.com/topsites/category/Top/World/Deutsch
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Category # Domains # Sub-Domains # URLs

Computer 100 561 2138786
Recreation 100 380 981638
Society 100 368 832017
Health 100 274 453282
Kids & Teens 100 234 311705
Culture 100 250 934552
Media 100 512 1981877
Shopping 100 429 6726195
Regional 100 793 3069791
Games 99 304 718348
Sports 100 290 656859
Business 100 546 1534639
Education 100 827 1240196
Science 100 398 579821
Home 100 325 1762361
News 40 117 820163
Universities 100 828 659175
TOTAL 1444 5846 20778475

Table 3.2. Dataset Details

Dataset extraction. Based on the selected domains from Alexa, we filtered
our CDX dataset by taking only those records with URLs belonging to one of the
domains. Additionally, we cleaned the dataset by discarding the following URLs:

• All URLs ending with one of the following extensions: .jpg, .png, .gif,
.css, .js, because these constitute embeds and not self-contained resources,
like websites. Although the dataset only consists of URLs with mime type
text, it included image types either because the server returned a wrong type
or the files were not available and pointed to an error page.

• All URLs that have never returned a successful HTTP status code (starting
with 2). Those are most likely broken links, which the crawler followed, but
which did not lead to a successful response.

• All URLs that were not crawled anymore in 2013, i.e., the last year of the
dataset, even if the last available capture was successful. Keeping them would
result in an inconsistent state, because we cannot tell what happened to them
after the last time they were crawled.

• All URLs that have been crawled successfully only once, even if this was in
2013. As it exists only a single capture of those pages, they do not contribute
to our evolution analysis at this point. Most likely, the Internet Archive
crawler has just begun to crawl them.

Ultimately, we ended up with a dataset consisting of 17 categories with today’s
popular domains from the German Web, as presented in Table 3.2. The dataset
covers in total 1,444 domains with 5,846 sub-domains and more than 20 million
URLs (20,778,475 URLs to be exact).
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Statistics and Metrics

Our statistics were gathered in two steps. First, a precomputation step counted
different properties of a domain. Afterwards, we aggregated these properties into
meaningful metrics. The following subsections describe these two steps in detail
and define the terminology used in the analysis results (Sec. 3.1.3 and 3.1.4).

We use the terms of birth, death and life to describe the lifetime of a URL or
domain in our dataset. We consider a URL or domain to be alive from the time it
first appeared in the Web archive until it was last seen online.

Precomputations. For each domain, we precomputed three types of statistics:
Evolution, Domain Age and URL Age statistics. Each of them describes a collection
of properties, such as size and age, computed in different units, i.e., calendar years,
domain years, URL years. For all statistics, one unit i spans a period pi of one year
time from ti to ti+1 (excluded), which may or may not be a calendar year from 1
Jan to 31 Dec, depending on the type of statistics presented.

We decided not to collect more fine-grained statistics, such as monthly or weekly,
because a higher resolution would not have had any advantages for our analysis and
is not sufficiently supported by the dataset. While studies on change rates would
require more steady crawls, this is not required for an evolution study such as the
one we present as the overall trends are not affected. Also, we cannot guarantee
such fine-grained captures with our dataset (see Sec. 3.1.5).

The following definitions describe the statistics:

• Evolution statistics:
Values are measured per calendar year.
ti denotes the beginning of the calendar year i.

• Domain Age statistics:
Values are measured for full years starting from the first date a domain oc-
curs in the dataset (e.g., for a domain that appears first in t0 = 04.05.2000
10:30:45, age i = 0 spans from to 04.05.2001 10:30:44).
ti denotes the beginning of the domain age i.

• URL Age statistics:
Values are measured for full years of the analyzed URLs. As before the
statistics are gathered per domain, however, here by combining values of
different URLs at the same age.
ti denotes the beginning of the URL age i.

Age statistics (Domain Age and URL Age) do not necessarily reflect the actual
age of domains/URLs, but their age as evident from the dataset. These ages
probably do not diverge much, but some time might have passed after the creation
of a new domain until it is included in the Web archive.

Evolution and Domain Age statistics are similar in the sense that both describe
the evolution of a domain over time. The URL Age statistics on the other hand
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are relative to the time of a domain’s URLs, which reflects different periods of
a domain but aggregates URLs at the same age. This enables different kinds of
statistics as shown below.

Aggregation. The precomputed statistics were accumulated among the domains
in each category as well as among all categories. For the sake of clarity, we present
only selected categories in our plots, which best represent the overall observations
as well as some outliers. Each metric that we analyze below is defined per period
pi on the set of domains that appeared in this period Di. For instance, a domain
which was born in the year 2000 is not included in Di for any i < 2000 in the
Evolution statistics. The same applies to Domain Age and URL Age statistics
with i referring to relative years instead of calendar years.

The aggregations with corresponding formulas that we present and discuss in
the following are presented along with the plots. The definitions of the used prop-
erties are listed in Table 3.1. In addition to the given definition of alive URLs, we
define the number of URLs alive at a single time point, which is a special case for
a period with length 0: while alived(pi) is defined for a period pi = [ti, ti+1) and
denotes the URLs that were alive the entire interval, alived(i) refers to the very
end of this period. It includes the URLs that were alive during the entire period
pi plus the ones that were born in period pi:

alived(i) = alived(pi) + bornd(pi)

3.1.3 The Age of the Web

The Web started around 25 years ago and has been maturing ever since. However,
is its actual age really increasing or is its content constantly being refreshed, by
pages being added and removed? To answer this question, we analyzed the age of
the Web in terms of how long URLs have been existent. It turns out, while the
majority of popular webpages are young, older pages are aging further. We show
the distribution of ages among URLs as well as the evolution of the long-living
parts of the Web.

Distribution

It has been shown by other researchers that most URLs on the Web are rather short
living [53, 51], i.e., less than a year. However, nothing could be deduced about
the URLs which survived after a year. Also, there was no evidence whether the
fraction of these short-term URLs increased or decreased over time. To answer these
questions, we first investigate the age distribution to determine what fraction of
URLs is short or longer living and how this differs among the different categories. In
this analysis, we only consider URLs that died during the timespan of our dataset,
determined by an unsuccessful status code without another successful status code
thereafter. The end time of such a URL is set to the time of the first returned
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unsuccessful status code. The begin time of the URL is the time it was crawled
first.
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Figure 3.1. URL Age Distribution

Figure 3.1 shows the fraction of URLs per
domain that died at age i, averaged over all
domains Di that reached this age. It is de-
fined on the URL Age statistics (see Statistics
and Metrics in Sec. 3.1.2), with pi referring
to the period of a URL’s age i:

1

|Di|
∑
d∈Di

diedd(pi)
countd(pi)

The age distribution shows that, indeed,
the largest fraction of the URLs of a domain,
about 55%, live less than a year. A consid-
erable fraction of URLs die at the age of two
to five. These are what we denote as short-living pages. Every page that lives
longer than five years is considered long-living and subject to contribute to the
aging of the Web. These constitute the long tail in this distribution. We do not
show the entire tail in this figure, but we considered URLs up to ages of thirteen.
It is interesting to observe that the university websites have a significantly higher
number of URLs dying after the first year, while less than 40% of webpages die at
the age of 0. For each of the subsequent ages they consistently outnumber other
categories indicating that university webpages tend to be rather long-living. In
contrast, we have shopping websites, which have the highest number of pages, 73%
of all its URLs, that die within their first year.

Now we turn to the second question of how the overall age distribution evolves
over time, presented in Figures 3.2a and 3.2b. For this, we resort to a different style
of analysis by considering the number of URLs at a certain age in the given year,
instead of how long they lived in the end. We divided the ages into six age buckets
of URLs that lived for less than – a year, 2 years, 3 years, 4 years, 5 years and 6
years or longer, which includes the URLs at age five together with the long-living
ones. We observe in Figure 3.2a, that over the years the number of URLs for each
bucket increases super-linearly. Interestingly, this trend correlates with the domain
volume which is presented in the next section.

Further, we investigate the normalized distribution for all years in Figure 3.2b.
The normalized value of an age bucket α at a given year pi is defined as follows
(on Evolution statistics):∑

d∈Di
|{a ∈ agesd(pi)|α · 12 ≤ a < (α + 1) · 12}|∑

d∈Di
alived(i)

Although the number of URLs overall grows over the years, as suggested by
Figure 3.2a, the fraction of the URLs at different ages remains more or less stable.
As emphasized by the computed fitted line in Figure 3.2b, almost 70% of all web-
pages are younger than a year at any time during the Web’s lifetime. The fact that
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Figure 3.2. Evolving URL Age Distribution

the sizes of all age buckets are equally stable over time suggests that, although the
Web is growing, it consists of equal proportions of different aged webpages at any
time.

As a result of the retrospective nature of this study, abnormal artifacts that
appear in some of the plots are difficult to track. Similar to the peak in year 2007
in Figure 3.2a there are artifacts in the following figures as well. These kinds of
abnormalities are most likely due to the different data sources that donated crawls
of very diverse volume and size to the Internet Archive. However, as all of them are
local phenomena, they do not affect our analysis as the global trend can be clearly
recognized in all figures. More details on the dataset are discussed in Section 3.1.5.
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Figure 3.3. URL Age Evolution

Knowing that the majority of pages on the
Web are rather fresh, we now analyze the
evolution of the Web’s average age. Rather
ironically, like humans can grow old but stay
younger by eating healthy and doing sports, a
similar trend applies to the Web as most of its
constituent webpages are frequently replaced.
To investigate this, we computed the average
age of the Web in months at any given year
as defined below (on Evolution statistics) and
plotted in Figure 3.3:∑

d∈Di

∑
a∈agesd(pi)

a∑
d∈Di
|agesd(pi)|

The figure shows that the Web is actually growing older after all. While the
average age of the Web was about 10 months during the year 2000, it grew almost
50% by the year 2012. This can possibly be attributed to the stability of age
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(b) Domain Life

Figure 3.4. Age of Long-Living URLs (older than five years)

distributions as shown before. Specifically, the fraction of long-living webpages,
which are constantly aging, contributes to a higher age every year.

This aging is almost linear, following the curve f(x) = a · x+ b, where x is the
number of years calculated from 1996. The estimated values for the parameters
of this curve are a = 0.74, b = 4.89 with an asymptotic error of 8.41% (the corre-
sponding plot is attached in Figure 3.10a). This aging would lead to an average
URL age of 23 months in the year 2020, which is double the age of 2005, while the
age today or at the end of our dataset (2013) to be exact is 1.5 years. According to
this finding, the Web will on average turn three in 2038. However, as our dataset
goes back only until 1996, there might be even older pages on the Web. For this
reason, our result can be considered as a lower bound.

We further verify our claim that this aging is caused by the long-living pages by
analyzing the age of webpages older than five years using the following expression
(defined on Evolution statistics):∑

d∈Di

∑
a∈{a∈agesd(pi)|a>5·12} a∑

d∈Di
|{a ∈ agesd(pi)|a > 5 · 12}|

The corresponding plot in Figure 3.4a visualizes the quite significant growth in
age of the long-living URLs. Even though this old part is just a small fraction of
the entire Web, its increasing age leads to the slow increase of the Web’s actual
age that we have shown above. This figure only starts in 2001 as there exist no
long-living URLs in our dataset before.

The same observation can be made by analyzing the average age of long-living
URLs at a given age of the corresponding domains in Figure 3.4b. This is defined
by the same formula as used before, but on Domain Age statistics with pi referring
to the of age i of a domain (see Statistics and Metrics in Sec. 3.1.2). The plot
reflects the actual aging of the popular domains in our dataset in contrast to their
real age, as shown on the x-axis: when a domain turns 10 years, their URLs are
on average only 80 months old, which is about 6.5 years.

Corresponding to what we observed before, all plots in this subsection acknowl-
edge the characteristics in terms of age for different categories. While websites of



3.1 Retrospective Analysis of Crawl Metadata 69

universities appear to be the oldest, others such as sports, business and computer
websites tend to be much fresher, not to say more up to date.

3.1.4 The Growth of the Web

We now turn our attention to measuring the size of the popular Web and how it
has evolved over time. The size of the Web can be interpreted as the number of
webpages or as the actual size of its content. We refer to the number of websites
and pages as the volume of the Web or a domain, while size refers to the actual file
size (including markup as well as the content of a page). In this section we study
both interpretations and their evolution over time.

By design, we expect growth as we focus on today’s popular domains, which
have grown popular over time and therefore, have naturally grown in volume and
probably size, too. The question now is how this growth, which made the websites
as popular as they are today, can be characterized.

Volume
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Figure 3.5. Evolution of the Web’s URL
Volume

Considering that the number of domains in
our dataset grows every year as we will see
in Section 3.1.5, it is not surprising that the
number of URLs grows as well. However, if
this was the only reason, the growth would be
similar to the growth of our dataset, which is
not the case. We analyzed this by computing
four properties: (a) the number of newborn
URLs in a year, (b) the number of URLs that
died in a year, (c) the number of URLs that
are alive at the end of a year, as well as (d) the
growth rate. The growth rate is the difference
between the number of born and died URLs.
While all other numbers are computed over

the period of a year pi, the number of URLs alive is considered at the end of the
year i, defined as follows (on Evolution statistics):∑

d∈Di

alived(i)

The results are presented in Figure 3.5, which shows that the Web is growing
a little faster every year. Especially noticeable is the strong growth starting from
2006, which however might be due to the characteristics of the dataset after all.
The reason for this growth of the Web is that there are more new URLs born
every year, while the number of dying URLs remains almost constant. In order
to affirm that this finding is independent from the growing number of domains
in our dataset, we investigated the average number of URLs per domain over the
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Figure 3.6. Domain Volume

years as well. The formula below (defined on Evolution statistics) describes this
progression, which is shown by the plots in Figure 3.6a per category:

1

|Di|
∑
d∈Di

alived(i)

Figure 3.6b shows the corresponding average growth rate per domain, as defined
below (on Evolution statistics), together with birth and death rates. The growth
rate describes the difference of born and died URLs of one domain in a given year
as fraction of the ones that were alive at the beginning of the year:

1

|Di|
∑
d∈Di

bornd(pi)− diedd(pi)
alived(pi) + diedd(pi)

Except for the beginning of this plot, which is most likely due to the transient
state at the early years of our dataset, the growth rate is relatively stable at around
30%. Based on this, we can deduce that the number of URLs that are born or die
depends on the volume of the Web or their domain. However, among categories
the growth varies strongly. While most of them follow the overall trend, university
websites barely grow in volume at all, as presented earlier in Figure 3.6a. Even
in 2013 they still only consist of about 1,000 URLs on average, whereas computer
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websites comprise almost 8,000 and shopping as well as news websites more than
12,000 URLs.

The average domain volume follows an exponential curve f(x) = a · bx + c,
where x is the number of years calculated from 1996. The estimated values for the
parameters of this curve are a = 22.82, b = 1.38, c = 300.18 with an asymptotic
error of 2.07% (the corresponding plot is attached in Figure 3.10b). Assuming the
growth continues with the same rate, in the year 2020 the number of URLs of
the popular domains would be almost 6.7 times the number of URLs today (2014)
and by 2030 it would be 166 times that of today. Already within the next two
years the domain volume would be doubled. Even though this prediction might
be weakened due to our crawling assumptions for archives (see Sec. 3.1.5) or the
resource limiting is not exponential with the same degree (which is indeed the
case as confirmed by the Internet Archive), the exponential nature is still retained,
although not as strong.

Another perspective to look at the growth of websites is from the age of a
domain in contrast to absolute years. Instead of plotting total numbers, this time
we analyzed the number of URLs at every age of a domain in relation to its initial
volume (defined on Domain Age statistics):

1

|Di|
∑
d∈Di

alived(i)
alived(0)

Figure 3.6c gives an impression of this relative volume over the lifetime of a
domain for five selected categories. We decided to look only at the first 12 years,
as our data is not representative enough for older domains. Most noticeable is
a quick growth at some point for the websites in most categories. However, the
time of this critical take off varies. While computer websites appear to have a
strong growth already very early around year six, where they reach 800 times the
volume that they started with at birth, and stagnate afterwards, most categories
take longer. As observed before, university websites hardly grow in volume at all.
Interestingly, the average growth during the lifetime of a domain, as presented in
Figure 3.6d, looks very similar to the actual growth of the popular German Web
over time.

Size

Apart from the volume also the actual size in bytes has been growing. We found this
to be the result of two evolutions: newborn URLs appear to be larger nowadays
than they used to be earlier and, in addition, URLs grow in size during their
lifetime.
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(a) Alive Size
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(b) Birth Size

Figure 3.7. URL Size Evolution

We first analyzed the average size of a URL evolving over time (defined on
Evolution statistics): ∑

d∈Di
sized(pi)∑

d∈Di
alived(i)

Figure 3.7a shows that the size of URLs indeed has increased over the years.
This can either mean that websites today consist of more content than they used
to in earlier days of the Web, or the markup has grown.

As it turns out, a major growth in size is contributed by newborn URLs, as
defined below (on Evolution statistics):∑

d∈Di
born_sized(pi)∑

d∈Di
bornd(pi) + flashedd(pi)

This evolution, presented by Figure 3.7b, is similar to the overall growth in
size. Its trend follows a linear curve f(x) = a · x + b, where x is the number of
years calculated from 1996. The estimated values for the parameters of this curve
are a = 866, b = 1320 with an asymptotic error of 6.9% (the corresponding plot is
attached in Figure 3.10c). Based on this, in the year 2038 a new URL will be born
on average with double the size as today (2016). As these are compressed sizes (see
Sec. 3.1.2), we cannot state actual numbers though.

Another factor that contributes to the growth of URL sizes is the growth of
existing URLs during their lifetime. For this analysis we only took those URLs into
account that died at some point within the period of our dataset and computed
the average size at birth and at death of all URLs that reached a certain age, as
defined by the formulas below (on URL Age statistics):∑

d∈Di,j≥i died_birth_sized(pj)∑
d∈Di,j≥i diedd(pj)∑

d∈Di,j≥i died_sized(pj)∑
d∈Di,j≥i diedd(pj)
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Figure 3.8. Average URL Birth/Death
Size

Figure 3.8 shows these numbers in a cu-
mulative manner, averaged over all URLs at
a given age. Accordingly, URLs that die ear-
lier tend to be larger than longer living ones.
Hence, it appears that less content promises a
longer lifetime. Furthermore, the plot shows
that URLs grow in size over time, regardless
of their age. This growth is almost constant,
which indicates that longer living URLs ei-
ther grow more slowly or that most of the
growth takes place in the early years of a
URL, as already found by Koehler et. al [52].
In contrast to that observation, short-living
URLs with a lifetime of less than a year seem
to grow least of all in size.

3.1.5 Archive Dataset Discussion
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Figure 3.9. Domain Emergence vs.
Registered Domains on DENIC (right y-
axis)

Our analysis of Web evolution is performed
on a dataset comprising German websites un-
der the .de top-level domain, which was pro-
vided by the Internet Archive. The Internet
Archive is the largest and most complete Web
archive today. It covers a period of 18 years
and constitutes a great source for analysis like
ours. Just like in every other archive, not ev-
erything can be preserved. What is saved
from the Web is influenced by crawl policies
and constraints that impact both complete-
ness and the change coverage.

We conducted this analysis under the ma-
jor assumption that, if a domain is crawled,
it is crawled completely with respect to the

applied crawling policies and limitations, such as certain filters and maximum num-
ber of hops from a seed page. Hence, even though this does not cover all URLs of
a domain, as long as the crawling strategy does not change over time, our observed
trends are still valid. For Internet Archive crawls performed after 2010 this is actu-
ally the case. Thus, at least our results after that time are not affected by changing
crawl policies at all. However, due to our focus on popular domains, we expect the
assumption to be widely true also before 2010. The Internet Archive received lots
of their crawls as donations from different partners. As crawlers, especially from
search engines, typically aim for the most prominent part of the Web, we consider
our subset consisting of popular domains to be covered with higher priority and
hence very comprehensively compared to the rest of the archive.
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Moreover, we investigated how well the analyzed popular domains in the Web
archive represent the actual Web by comparing to the trend of registered domains
on DENIC5 (the .de domain registrar), as shown in Figure 3.9. The plot gives
an overview of presence of domains from the different categories in our dataset
at every year under consideration. A domain that is not present can mean two
things: 1. it was not online at that time, or 2. it was not considered in the Internet
Archive crawls. Although we are not able to distinguish this, the experiment shows
a similar trend to the actually existing domains, suggesting that our dataset is fairly
representative.

Interesting are also the differences among different categories: whereas about
75% of today’s university websites already existed in 1999 and grew quickly, not
even 20% of today’s popular game websites were present back then. Most likely,
many universities even had a website before 1996, but only got picked up by the
crawlers later. By contrast the game websites that are most popular today have
been created more recently and grown slowly since. The fact that perhaps not all
domains were covered in the very beginning does not affect our analysis, as we
investigated volume and size on a per-domain and per-URL basis, respectively.

3.1.6 Conclusion and Outlook

In this study, we have presented an extensive longitudinal analysis on 18 years of
the popular German Web, based on crawls of the Internet Archive. We carried out
an in-depth analysis on how the popular domains of today were created and how
their age, volume and sizes have grown over the last decade. First, we find that
most of the popular educational domains like universities have already existed for
more than a decade. On the other hand, domains relating to shopping and games
have emerged steadily over the period of the last decade. Second, we see that the
Web is getting older, not in all its parts, but with many domains having a constant
fraction of webpages that are more than five years old and aging further. Finally,
we see that popular websites have been growing exponentially after their inception,
doubling in volume every two years.

The study has provided us with interesting insights and ramifications on the
evolution of the prominent part of the German Web. What we have learned about
its growth and size can impact resource allocation strategies for Web archives as well
as exhaustive and focused crawling strategies. Especially the identified differences
among the studied categories can be of importance when dealing with topical or
organizational Web archives from the respective areas. The introduced properties
and definitions provide a solid foundation for comparing our findings on growth
and aging against different Web archive collections. A possible research question
would be: How does the Web of other countries compare to this analysis of the
German Web? Furthermore, we lay the foundation for follow-up questions in
future research, such as: How do webpages evolve content-wise compared to size
and age, and why is the average size of the newborn webpages today larger than

5http://www.denic.de/en/background/statistics.html

http://www.denic.de/en/background/statistics.html
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Figure 3.10. Predictions of Evolution Analysis

the ones in the yesteryear? Is it because of an actual increase in content or is it
because of the markup due to constantly increasing Web authoring technologies?

3.2 Efficient Processing of Archival Collections

One of the fundamental tasks in using Web archives for research is corpora building.
This task involves the selection and filtering of subsets, grouping and aggregation
of records of interest and the extraction and derivation of new data (cf. Sec. 3.2.2).
Consequently, there is a need for a framework that provides this functionality for
efficiently constructing corpora out of the original archived collection. However,
only providing fast access to the underlying collection is not sufficient. The frame-
work needs to tackle a number of objectives driven by practical requirements (see
Sec. 3.2.3), like simplicity, expressiveness, extensibility and the ability to produce
reusable, well-structured output.

We address these objectives by proposing ArchiveSpark, a framework for dis-
tributed Web archive processing based on Apache Spark (see Sec. 3.2.4). ArchiveS-
park is based on a novel two-step approach that first loads metadata as proxies of
the corresponding data records and only reads the actual data records in a second
step when required. By supporting standard file formats, we achieve the distinct
advantage of institutions being able to easily share and apply the corpus gener-
ation specification across different collections. Towards providing efficient access,
ArchiveSpark makes use of a metadata index (CDX) that is widely used by other
tools in the domain of Web archiving. The CDX provides a lightweight representa-
tion comprised of metadata from all records in an archive. We achieve efficiency
of access by exploiting the CDX to select records of interest before accessing the
original archived content from the corresponding (W)ARCfiles. This random-access
pattern of reading data was supported by the inclusion of data record pointers (file-
name with record offset and record length) in the CDX metadata records. Given
that, we further laid out the goal to also support Web archive data from different
locations, such as directly from the Wayback Machine without needing the records
to be available on-site.

ArchiveSpark also delivers substantial speed-ups by using the lightweight repre-
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sentations of records to enhance performance of distributed operations, like group-
ing and aggregation, unlike existing approaches that operate on much larger raw
inputs. More specifically, rather than starting with all archived records and strip-
ping them down, we operate on lightweight representation of records from the CDX
and iteratively extend it as needed. We consequently observe large improvements
in efficiency as we are able to minimize expensive disk operations involved as the
researcher modifies and refines her requirements. To evaluate ArchiveSpark’s perfor-
mance, we compare and contrast our system with two alternative approaches and
perform benchmarks to show differences in speed for select scenarios (see Sec. 3.2.5).
The benchmarks show that ArchiveSpark is faster than a similar approach that does
not make use of the metadata index in the selected scenarios, which we aim at.
Also, depending on the task, ArchiveSpark is even faster than a method of filter-
ing based on HBase, a distributed database system, without the space and time
overhead of ingesting and storing the archived data into a database.

ArchiveSpark is open-source and contributions to extend its functionality are
very much appreciated. For this reason, we provide convenient extension points
and an architecture that makes it easy to apply third-party tools to create custom
derivatives from Web archives as part of an ArchiveSpark job specification. The
working tool with the functionality that we provide out-of-the-box is freely available
under:

https://github.com/helgeho/ArchiveSpark

3.2.1 Related Work

Scientifically published articles on data extraction fromWeb archives, like ArchiveS-
park, have been very limited. To the best of our knowledge, the only comparable
system is Warcbase, later renamed the Archives Unleashed Toolkit (AUT)6, by Lin
et al. [62], which serves as the baseline in our benchmarking process (see Sec. 3.2.5).
There are also a number of other approaches in the area of accessing and mining
Web archives including tools from industry.

In this discussion on related work we differentiate between specialized Web
archive access approaches based on certain properties and more general approaches.
The formers provide search and lookup operations as the method of access, while
the latter provide access to all the archived data with support for data processing.
ArchiveSpark, our tool for general Web archive access, supports arbitrary filtering
and data derivation operations on archived data making it much more suitable
for the scientific use of Web archives. Furthermore, ArchiveSpark’s concept of data
specifications make it a universal tool for distant reading of archival collections,
which will be discussed in the end of this section.

6https://github.com/archivesunleashed/aut

https://github.com/helgeho/ArchiveSpark
https://github.com/archivesunleashed/aut
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Specialized Web Archive Access

The Internet Archive, as one of the driving institutions of Web archiving, and
most other Web archives, feature the Wayback Machine or Open Wayback 7 to
provide access to their Web collections. The Wayback Machine enables URL based
access to the archived captures of a website, based on a server API powered by
a metadata index (CDX). Lookups are designed for efficient, random URL based
access and accomplished by running binary searches through the sorted index files.
Researchers can query the CDX server for metadata information of a particular URL,
host, domain or URL prefix.

In contrast to these structured queries by means of metadata, the UK Web
Archive8 is working on an information retrieval system based on the Apache Solr
search platform9. Their Shine project10 supports faceted searching and more so-
phisticated trend analysis of Web archive content. Hockx-Yu [30] identifies 15 Web
archives that feature similar kinds of full-text search capabilities. While these are
largely engineering efforts that exploit existing search systems, there have also been
scientific efforts to build indexes specialized on certain properties, such as time [42]
or semantic annotations [114]. There are however two major challenges with these
approaches that limit their applicability in the area of corpus building from Web
archives. First, it is not always feasible to obtain the necessary computational
resources to parse and index all archived Web content and store them in a search
index. Second, even if the necessary resources are available, they cannot efficiently
support corpus building processes that go beyond these specialized lookups. For
these reasons, with ArchiveSpark, we propose a general data processing approach
that exploits the CDX for gains in efficiency while not having to rely on an external
index.

General Web Archive Access

Due to the size of Web archives, often in the order of multiple terabytes, a single
machine can no longer process or even store those collections. As a result, dis-
tributed computing facilities are commonly implemented for processing archived
data. In contrast to the previously discussed specialized access approaches, these
facilities enable general access to the archives by operating directly on the data
records for selection, filtering, aggregation and transformation.

As part of their self-guided workshops, like the Web Archive Analysis Work-
shop11 and ARS Workshop 12, the Internet Archive provides a number of tools for
this purpose. These tools enable researchers to batch process data and derive infor-
mation like hyperlink graphs and mined text using, Apache Hadoop, an open-source

7https://github.com/iipc/openwayback
8http://www.webarchive.org.uk/
9https://github.com/ukwa/webarchive-discovery/wiki

10https://github.com/ukwa/shine/wiki
11https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Analysis+

Workshop
12https://github.com/vinaygoel/ars-workshop

https://github.com/iipc/openwayback
http://www.webarchive.org.uk/
https://github.com/ukwa/webarchive-discovery/wiki
https://github.com/ukwa/shine/wiki
https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Analysis+Workshop
https://webarchive.jira.com/wiki/display/Iresearch/Web+Archive+Analysis+Workshop
https://github.com/vinaygoel/ars-workshop
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implementation of the MapReduce programming model for distributed computing
of large datasets [58].

AlSum [60] presents with ArcContent a tool for archive access based on Hadoop
that uses Cassandra [61], a distributed database to store the extracted data. Similar
to ArchiveSpark, it involves a data filtering step where records of interest are selected
using the metadata fields in the corresponding CDX dataset. However, in contrast
to our approach, the extracted records are stored into Cassandra to be queried
through APIs powered by a Web service. This only works in cases where the
research task is clear and well-defined beforehand and does not involve iterative
filtering and data transformations.

Most similar to our ArchiveSpark framework is Warcbase by Lin et al. [62], later
renamed the Archives Unleashed Toolkit (AUT). This open-source platform for
data processing on Web archives provides two different methods to access the data
and served as a baseline in our benchmarks (see Sec. 3.2.5). Warcbase was origi-
nally developed to be based on HBase, an open-source implementation of Google’s
Bigtable [63], a Hadoop-based distributed database system. It features tools to
ingest the Web archive records into HBase and allows for temporal browsing of
URLs, with efficient, random URL based access similar to the Wayback Machine.
The first method requires the storing of data in HBase with researchers leveraging
Hadoop based tools to analyze it. However, this has the major drawback of involv-
ing an expensive setup phase of duplicating the entire Web archive in HBase. For
the second method, Warcbase provides convenience functions to load and process
the archive files directly using Apache Spark, one of the most popular alternatives
to Hadoop. Spark, in contrast to Hadoop/MapReduce makes extensive use of the
main memory of nodes, which has shown to lead to impressive speed-ups [59]. With
the name change to the Archives Unleashed Toolkit, the only supported method
now is the one based on Spark in order to avoid the previous HBase overhead
of Warcbase [115]. However, this Spark based method, in contrast to ArchiveS-
park which is also based on Spark, does not optimize for efficiency or meet all the
objectives outlined below.

Universal Distant Reading

ArchiveSpark’s modular architecture allows to implement any logic to load meta-
data and data, from any source and of any type, even beyond Web archives, like
digitized journals and boos. This generalized support makes it a universal tool for
distant reading and to the best of our knowledge, it is the first one of its kind. Dis-
tant reading refers to the technique of analyzing large corpora of text documents
without closely reading every single one. Schulz [116] describes it as “understanding
literature not by studying particular texts, but by aggregating and analyzing massive
amounts of data”. The idea was proposed by Moretti [117] as a way to analyze
texts systematically, using statistical and quantitative methods on texts, which are
often expressed as networks of terms, where the edges represent the relationships
among the terms. While it was originally meant to analyze literary fiction, we con-
ceive it as a more general tool to derive information from big collections without
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reading single documents. A good overview of the related works in distant reading
from the visual analytics perspective for Digital Humanities has been published by
Jänicke et al. [118].

An area that is closely related to this, but in which distant reading and archival
collection are often neglected, is Big Data. In that field, Maemura et al. [119] pre-
sented a framework to document the research process in Web archives, contributing
to a better understanding of the findings and their provenance, in order to reuse
of data, methods, and workflows. ArchiveSpark provides a technical solution to
this by enabling a rather declarative description of data processing workflows that
can be reused among different datasets, even beyond Web archives. This supports
new processes to work with Big Data across teams and projects in coordination
as well as data sharing, as sought by Saltz [120]. At the same time, we tackle
interoperability challenges, widely present when dealing with Big Data [121].

3.2.2 Use Case Scenario

In order to use Web archives as a scholarly source for scientific research, a re-
quired first step in most cases is the extraction of a well-defined corpus to work
with [30, 122]. Scientists typically focus on a temporal and/or a topical subset
of the archived data within the scope of their research question. In the following
example, we consider five steps to be taken by a political scientist who wants to
analyze sentiments and reactions on the Web from a previous election cycle.

Step 1: The researcher would need to define and extract a specific Web collec-
tion related to her research. In this case, she would only need websites that were
archived in the time period of interest. However, this time-based or longitudinal
filter alone would result in too many candidate websites as most Web archives are
not topically organized. Finding just election related websites from this candidate
pool requires domain expertise and/or manual intervention. For that reason, it is
useful to have this pool to be as small as possible to begin with.

Step 2: Since the researcher needs to consider only text resources from websites
for her sentiment analysis project, she would apply a filter on MIME types to only
select such resources. However, identifying these resources by their MIME type
involves accessing and parsing the HTTP headers of the records in the archive,
which is a low-level detail and needs to be abstracted away from the potentially
non-technical researcher.

Step 3: Another required filter involves the HTTP status code of a particular
capture. The fact that a certain URL was captured at some point in time and is
part of the archive does not necessarily mean there was a valid Web resource being
served at the URL. The URL could have been the result of an invalid link or a
dead URL that was valid at a previous time. As our example researcher would
only be interested in successful URL fetches, she would need to filter for records
with status code 200.

Step 4: At this point, the candidate set is still likely to be very large for manual
analysis. The researcher might decide to only focus on websites that contain certain
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terms or a specific set of entities, e.g., the candidates of the election. While seeming
straightforward, this content-based filter involves accessing the content of every
candidate record, which in turn involves separating the headers from the response
body, encoding the textual response to a string, parsing out raw text from HTML,
and finally applying text processing tools, before filtering on the resulting values.

Step 5: Web archives typically contain multiple captures of a website for every
time the website was crawled, regardless of whether it has changed or not. There-
fore, our researcher might decide to pick only the latest captures of the candidate
URLs. In order to apply this filter, all captures of the intermediate corpus need to
be grouped by URLs and sorted by their capture times. These types of operations
are very expensive when performed on the raw records that include the entire pay-
load. By operating only on metadata records that contain the required fields, they
can be made much more efficient. However, this implementation is not something
that the researcher should necessarily be concerned with.

Filtering, selection, grouping and extraction steps, like the ones described, can
be arbitrarily continued. Depending on the task at hand, it may be necessary to
keep track of where a certain value was derived from. As an example, consider the
case that the researcher deems entities extracted from the title text to have more
value than those extracted from the body text on a page. Keeping track of this lin-
eage is an essential way to document the collection building and derivation process
and enable its comprehension and reproduction by other researchers. Therefore, it
should be included in the output format to be used by the researcher in her further
research process.

ArchiveSpark seeks to tackle the challenges that arise by a research scenario such
as the one described above. A researcher or a technical person supporting her on
the corpus building process should be able to easily specify her requirements and
efficiently extract the required corpus from a Web archive.

3.2.3 Objectives

ArchiveSpark addresses six objectives, which we identified as being essential for a
tool for corpus creation on Web archives, based on practical requirements. These
comprise (1) a simple and expressive interface, (2) compliance to and reuse of the
standard formats in the domain of Web archives, (3) an efficient selection and
filtering process, (4) an easily extensible architecture to support various derivation
tools, (5) lineage support to comprehend and reconstruct the process of derivation
from the archive, and (6) an output in a standard, readable and reusable format.

Simple and Expressive Interface

The primary objective, when we designed ArchiveSpark, was a simple interface that
lets users access the fields of interest without the need to do any parsing of archived
Web records themselves. Users of this interface would be able to easily express any
selection and filtering operations and access available information without carrying
over complete archived records at each stage of the workflow. Additionally, the idea
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was to provide a seamless transition from filtering based on just metadata available
in the index to that based on the contents of the archive.

Since ArchiveSpark is based on Spark, which is written in Scala, we naturally
chose Scala to be the language of choice for ArchiveSpark. Scala enabled us to spec-
ify the ArchiveSpark extraction and derivation workflow in a functional manner.
This functional approach is less verbose than that of traditional object-oriented
languages and often simplifies tasks as it allows for a more natural way of express-
ing thoughts. Our interface is inspired by the existing Spark API and the Scala
standard library, to provide the same degree of simplicity and expressiveness in a
rather declarative manner.

Even though the interface, in our opinion, is fairly intuitive to use by a computer
scientist or a researcher familiar with programming, we do not expect researchers
from other disciplines to be able to use it directly in all cases. However, with
the aid of a technically savvy person, the researcher should be able to express her
thoughts and requirements on the collection building process and get them easily
translated into an executable ArchiveSpark workflow.

Standard Formats

In the area of Web archiving, there are a couple of file formats for storing archived
Web resources and derived metadata that have been established and in wide use
over the years. As a result, these formats have either become de-facto standards or
have been standardized by ISO. Given their common availability in almost every
known Web archive, we wanted our system to be based on these file formats. We
did not want to introduce any new file format or index structure: while such files or
indexes could provide gains in efficiency for access, their generation would necessi-
tate a pre-processing phase consuming expensive compute resources and additional
storage. While being based purely on pre-existing file formats, ArchiveSpark main-
tains its essential objective of efficiency as described in the next sub-section.

The most important format in the world of Web archives is WARC (Web
ARChive), which is registered as ISO 28500. WARC is a format to store archived
Web resources. Every record in a WARC file represents the capture of a single Web
resource at a given instant of time. The WARC record comprises a header section that
includes the URL of the resource, the timestamp of capture and other metadata,
as well as a payload section that contains the body returned by the Web server. In
the case of HTTP responses, the payload consists of a HTTP header and body. Be-
fore WARC was introduced as a format to store Web archives, archived records were
widely stored in the older ARC format13. Although ARC is not standardized, many
Web archives still contain data in this format, and hence ArchiveSpark supports
both WARC and ARC file formats.

Another format which is not standardized but is seen as a de-facto standard is
CDX14. This is an index format that contains a number of metadata fields for every

13http://archive.org/web/researcher/ArcFileFormat.php
14http://archive.org/web/researcher/cdx_file_format.php

http://archive.org/web/researcher/ArcFileFormat.php
http://archive.org/web/researcher/cdx_file_format.php
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Web capture including pointers to the (W)ARC file and the file-offset into the file
where the capture is stored. A header line specifies the metadata fields contains
in the plain text index file. Most commonly generated, however, are CDX files with
either 9 or 11 fields, which are utilized by the Wayback Machine to serve records to
users browsing the archive. Since the Wayback Machine software is currently the
access method of choice for most Web archives, CDX files are generated by and/or
readily available to these archives. As an example, CDX files are available for the
crawls provided by the Common Crawl initiative15. Furthermore, it is possible
to generate both WARC and CDX files with the current version of the Unix/GNU
download tool Wget16.

In summary, with ArchiveSpark we designed for, first, being compliant to these
standard formats, and second, not introducing and depending on any new format.
This way we aim to guarantee that any Web archiving institution that has (W)ARC
and corresponding CDX files can use ArchiveSpark to extract and mine their Web
collections, without requiring any expensive pre-processing steps or prerequisites.

Efficiency

Efficiency is one of the core objectives of ArchiveSpark. Since Web archives are
typically large-scale data collections of terabytes or even petabytes, a scan-based
selection over all archive files is a very time-consuming process and can potentially
run in the order of multiple days. This is in most cases too inefficient to be used
for corpus building as part of a scientific research task.

With ArchiveSpark we leverage the available CDX index files. As a first step, we
apply filters on the metadata fields from the CDX and generate a small candidate
pool with the captures of interest that need to be read in from (W)ARC files. This
way, we potentially avoid the scenario of reading in all the records in the archive
before ending up rejecting a large number of them (see Sec. 3.2.4). Our approach
of CDX-enabled filtering and selective data access results in efficiency gains over the
scan-based approach.

Furthermore, when working with the raw archive records, complex operations,
like groupings and aggregations, become much more expensive, since the whole
records need to be moved around in a distributed setting. This could be optimized
by stripping out data that is not required by those operations. However, if needed
later, it will need to be recovered from disk, which is often even more expensive.

With ArchiveSpark we turned this around using a selective data access and
derivation approach, starting with lightweight records consisting of only metadata
and iteratively extending them as needed, resulting in further gains in efficiency.

15http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index
16https://www.gnu.org/software/wget

http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index
https://www.gnu.org/software/wget


3.2 Efficient Processing of Archival Collections 83

Extensibility

In most research applications, instead of working on the raw archived resources,
a researcher is interested in extracting or deriving the data of interest for a given
research task. Derivations can either be created from the original payload of an
archived resource or from previously derived data. An example of such successive
derivations on text are Natural Language Processing (NLP) tasks, such as the
extraction of named entities from websites. The corresponding derivation tools
operate on natural text and thus, first require the HTML parsers to remove markup
and extract plain text, followed by the NLP tool, i.e., the named entity extractor,
to extract the desired information.

There are a limitless number of other derivations that researchers can be inter-
ested in, e.g., audio/video fingerprinting on archived media files, OCR on archived
images and many others. With ArchiveSpark we want to ensure any possible deriva-
tion from Web captures, regardless of whether they were constructed by us before-
hand or not. Therefore, we designed a very flexible architecture with appropriate
extension points that allow the application of custom code as well as third-party
libraries to build derivatives from the records of a researcher corpus.

Traceability

An important trait of any scholarly resource is transparency and traceability. In
order to make scientific research reproducible it is essential to understand how the
research corpus was designed. However, in the case of Web archives, it is difficult
to retrospectively reproduce the crawling process. Reasons for this are, among
others, an ever-changing Web, a semi-automatic prioritization by Web crawlers,
changing crawling strategies as well as multiple, disparate parties being involved
in the collection process. As a result, we found it even more important to focus on
documenting the data lineage of corpus building from Web archives.

Also, depending on the needs of the researcher, it may often be sufficient to
only deal with derived information and not include the original records. In order
to reproduce this derivation process at a later time, a proper documentation of the
data lineage is absolutely crucial. ArchiveSpark achieves this objective of traceabil-
ity by documenting the data lineage of all the derived records. The documentation
includes metadata that allows for the identification of all the source records respon-
sible for the derivative as well as the derivation path outlining the steps undertaken
to filter, transform and derive from these records.

Reusable Output

The extraction and derivations steps performed by ArchiveSpark act as a preprocess-
ing phase in a research pipeline. The data extracted from the Web archive serves as
scholarly source for research tasks, which can either be manual or programmatic.
In the case of manual research, researchers would typically create rather small, very
selective corpora and read in the results manually. On the other hand, researchers
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may use tools to analyze the corpora based on different features in a completely
automatic or semi-automatic manner.

In either case, the corpus needs to be clean, well-structured and readable. While
human readability implies a pretty printed output without too much clutter, ma-
chine readability implies data parsing support. The latter can be guaranteed best
by producing data in a commonly used format with existing parsers for various
programming languages. One such format is JSON, which was originally introduced
as an exchange format for JavaScript to be used by Web services. However, because
of its simplicity, it has become a widely used format that can be easily parsed by
many pre-existing tools.

JSON supports a cascading nested structure with multiple levels of data and is
therefore well-suited for supporting the data lineage functionality of ArchiveSpark
as described above. Another advantage is that these nested cascades of data can be
easily presented in a fairly human readable form. For these reasons, we decided on
JSON as the default output format of choice. Of course, any other output format
that meets our outlined objectives can also be implemented and integrated into
ArchiveSpark.

It is worth noting that the use of ArchiveSpark is not restricted to such an output.
Researchers can also use it to access the archive, apply filters and derivations, and
continue using the rich data types provided by ArchiveSpark in a Spark job to
perform data analysis at scale, e.g., machine learning or graph analysis.

3.2.4 ArchiveSpark Concepts and Architecture

ArchiveSpark is a framework that enables efficient data access, extraction and
derivation on Web archive data with a simple API that enables flexible and expres-
sive queries. The following sections describe the approach as well as the distinct
features of ArchiveSpark, designed to meet the previously described objectives.

Approach

ArchiveSpark makes use of a metadata index to selectively access resources from a
Web archive. This approach is optimized for efficiency when extracting a defined
subset of records as it avoids having to perform a full scan through all records in
an archive. Since corpora used in scientific fields typically consist of data derived
from a small subset of the entire Web archive, ArchiveSpark is well suited for these
use cases.

Figure 3.11 shows how ArchiveSpark works in the standard case of metadata
being loaded from CDX and the corresponding records stored in (W)ARC files. First,
the filtering process is performed using only metadata contained in the CDX files.
Second, by utilizing the file pointers contained in the CDX records, ArchiveSpark
selectively accesses the filtered records from the underlying (W)ARC files. At this
stage, we augment the record’s metadata with headers and content from the (W)ARC
records. Next, users apply what we term enrichments to derive new information,
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Figure 3.11. Illustration of the ArchiveSpark Selection and Enrichment
Approach

such as named entities or hyperlink data, that is added to the records. These
enrichments can be applied by executing custom code or external tools. Based on
the derived information, further filters and enrichments may be applied iteratively.
The resulting corpus can be saved in a custom JSON format that is tailored to
support data lineage.

Modularity

ArchiveSpark’s flexibility of supporting various data sources and types is achieved by
the concept of data specifications (DataSpecs). A DataSpec defines how metadata
records are loaded and how they are associated to the corresponding data items.
It encapsulates the code to load and access metadata as well as corresponding
data records, while the details are abstracted away from the users. These isolated
objects allow for easy sharing of datasets as well as data processing pipelines in
the form of recipes, which are defined in a clean, declarative manner with the
associated complex logic defined separately. At the same time, a given DataSpec
is fully customizable by its developer and may be parameterized, which allows the
user to easily specify required information, such as a data path or other types of
location pointers. Figure 3.12 illustrates how DataSpecs fit into ArchiveSpark’s
architecture and play together with the other components.

Once ArchiveSpark is instructed to load a given DataSpec, the corresponding
dataset is presented to the user as a collection of EnrichRoot records, the entry
points into ArchiveSpark’s data model. The initialization of such records is part of
the used DataSpec. For instance, a common DataSpec for Web archives creates
records that hold the corresponding CDX record information, while one for book
records would contain other kinds of metadata, like a book’s title and author.
This ability to support other types of archival collections will be addressed in
Section 3.2.6. The specialized EnrichRoot records then provide access to the actual
data as defined by the used DataSpec.
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Figure 3.12. ArchiveSpark Architecture

Starting from there, ArchiveSpark’s data model constitutes a hierarchical tree
structure with EnrichRoot as the root node. Each node in this tree model is of type
Enrichable and holds a value (for the root node, this is typically the metadata
record), as well as zero or more child nodes with the child nodes representing either
extracted or derived data based on the parent’s value. Hence, the hierarchy of the
data encodes its lineage, which corresponds to the dependency hierarchy of the
applied functions.

Enrich functions (EnrichFunc) describe transformations that can be applied to
the values stored in ArchiveSpark’s data model. They encapsulate arbitrary logics
and even third-party tools. Similar to a DataSpec, an EnrichFunc is used as an iso-
lated black box in a declarative manner and can be configured by the user. All en-
rich functions, except for the root, have a dependency that determines their input,
i.e., the dependency function’s output will be the input of a DependentEnrichFunc.
The very first RootEnrichFunc in such a dependency chain is in charge of loading
the data of a record with accesses provided by the EnrichRoot.

To reuse and share an EnrichFunc, users can easily change its dependencies. As
an example, consider a function that has been defined to depend on the body text
of a webpage, i.e., its direct dependency is the EnrichFunc that extracts this text
from the webpage. By changing this dependency dynamically to the function that
extracts the title of a webpage, the same EnrichFunc will now operate on the title
as input. Similarly, by changing the root dependency, a EnrichFunc can now by
universally applied, regardless of the input data type, i.e., a function that has been
developed to extract entities from text is now applicable to any text, regardless of
whether it is text on a webpage or in a book.

Currently, we provide the most basic enrich functions to get users started, but
we will continue to extend ArchiveSpark with more functions moving forward. As
ArchiveSpark is fully open source, anyone can also contribute to its development
and provide their own tools as enrich functions in separate projects. To support
this, we provide convenient base functions that make it easy for a developer to
define custom enrich functions.
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Interface

The interface of ArchiveSpark lets users define the extraction and derivation work-
flow in a declarative manner. It is based on Apache Spark and greatly inspired
by its API (Application Programming Interface). Also, ArchiveSpark uses the data
structures of Spark and is hence fully compatible with any transformation methods
provided by Spark. Like Spark, ArchiveSpark is implemented in Scala, a functional
and object-oriented programming language running inside the JVM, Java’s runtime
environment. As a result, it is compatible with any third-party library running on
the JVM as well, for instance all available Java and Scala libraries.

The entry point to ArchiveSpark is a globally available object with the same
name. It serves as a starting point by providing methods to load the data into
so-called Spark RDDs (Resilient Distributed Datasets). RDDs are partitioned col-
lections of objects spread across a cluster, stored in memory or on disk. Spark
programs are written in terms of operations on RDDs.

Through DataSpec’s as described above, we support various combinations of
metadata and record types as well as sources. For instance, in order to load Web
archives from local (W)ARC and CDX files, stored in Hadoop HDFS (Hadoop Dis-
tributed File System), we would use the provided WarcCdxHdfsSpec, which expects
the both file locations as parameters. The following code is written in Scala, since
it is our language of choice for defining an ArchiveSpark workflow specification:

val archive = ArchiveSpark.load(
WarcCdxHdfsSpec("path/to/CDX", "/path/to/(W)ARC"))

The above archive variable now references a Spark RDD consisting of special-
ized ArchiveSpark records. Hence, all methods provided by Spark to manipulate
it through a set of parallel transformations, e.g., filter, as well as actions, e.g.,
count, can be applied. However, at this point these are based on the CDX data and
therefore, only allow access to the metadata fields available in the CDX.

The following call applies filters on HTTP status codes and MIME types and
only retains those records with a successful response (HTTP status code 200 ) of
type text/html :

val filtered = archive. filter (r =>
r . status == 200 && r.mime == "text/html")

In the functional paradigm of Scala, every operation returns a new, immutable
object instead of modifying the previous one. We have made sure this behavior is
provided by ArchiveSpark as well. Hence, archive still represents the entire dataset,
while filtered is a new object representing the filtered one.

As all Spark transformation operations are lazily evaluated, no actual data
access will have been performed yet. The original RDD as well as the filtered
one are just representations of the corpus to be extracted from the Web archive.
The above filter is only evaluated or executed once a Spark action, such as a data
output, is performed. The advantage of the lazy loading is that, although all CDX
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records need to be read, only those that have passed through the filters are kept
in the dataset consuming much less memory.

To access the actual content of these records in the next step, ArchiveSpark
provides a method to apply so-called enrich functions. The most basic enrich
function is WarcPayload. It opens the (W)ARC records, which are pointed to by the
selected CDX records in the dataset, parses the HTTP response and enriches the
original records with four fields: 1. (W)ARC header, 2. HTTP status line, 3. HTTP
header, and 4. Payload:

val response = filtered .enrich(WarcPayload)

Enrich functions can depend on each other and be applied consecutively. Each
consecutive application derives new information from its parent dependency. While
WarcPayload does not depend on any other enrich function and is usually applied
first, StringContent depends on WarcPayload. It transforms the payload of every
record in the dataset into a string representation and enriches the record with this
string. This works because our filter on the MIME types before made sure that
our example dataset only contained text responses and no images or other binary
files:

val strings = response.enrich(StringContent)

By explicitly enriching the records with both WarcPayload and StringContent,
ArchiveSpark marks both these fields to be contained in the output. This way, by
specifying what the records should be enriched with, the researcher can control
the required features in the final corpus. If the dataset referenced by the response
variable had been directly enriched with StringContent, only this enrichment would
have been part of the output. However, internally, this process would still have first
enriched the dataset with WarcPayload as it is dependent on the payload. And
since the payload was already present in the records from an earlier enrichment, the
payload would have been used as-is and would not have needed to be re-computed.
Note that dependencies specified in enrich functions are defaults but can also be
explicitly specified by the user. For the sake of clarity and brevity, we do not show
all the currently available methods and options of ArchiveSpark here.

Based on the enriched information, additional filters can be applied. This pro-
cess of enriching and filtering can be repeated as needed. For the most efficient
execution, it is recommended to apply filters as early as possible i.e. as soon as the
data to be filtered on is available. This guarantees that any expensive derivation
is performed on as few records as needed. This is especially important for the very
first enrichment operation, which involves accessing data from (W)ARC files.

Other than the metadata fields available from the CDX records, the data de-
rived by enrich functions is not typed, as different functions can create fields of
various data types. The access to these values is enabled by specifying a path in
dot-notation, where each segment specifies a level in the derivation pipeline. To
facilitate this access, the corresponding enrich functions encode these paths and
can be used instead, e.g., StringContent points to payload.string. ArchiveS-
park provides getter methods that support both ways of referring to a value. As
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an example, the following instruction filters on the content string, i.e., the HTML
code in the case of a webpage, and retains only those records that include the term
internet :

val internet = strings. filter (
r => r.getValue(StringContent).contains("internet"))

After the final dataset has been created, it can be written out as JSON using the
saveAsJson method on archive records RDDs provided by ArchiveSpark. It trans-
forms the records into JSON objects consisting of the metadata and all explicitly
enriched data:

internet .saveAsJson("/output/path/results.json.gz")

The gz extension is automatically detected by ArchiveSpark and causes it to
compress the output using gzip. The above six instructions have now created a
corpus consisting of all successful text/html responses, i.e., HTML webpages, that
contain the term internet, formatted as pretty-printed and well-structured JSON in
a compressed form.

As an alternative to the JSON output, users are free to transform the archive
records that ArchiveSpark uses as its first-class citizen into any form they want.
We provide all the necessary access methods for this purpose. That way, besides
the corpus building use case, ArchiveSpark can be used as a library to access Web
archives as part of a larger data analysis application pipeline.

Formats and Lineage Support

With the data specifications provided as part ArchiveSpark’s core codebase, we
support one of the most common CDX formats that is in use by the Internet Archive’s
Wayback Machine. This format encodes eight metadata fields and three additional
fields pointing to the (W)ARC file where the capture is stored along with file-offset
and compressed length of the record. However, we can easily support additional
CDX metadata fields as well as other types of metadata and data records, simply by
creating new DataSpecs, which can be shared with other users in separate projects.

The default CDX is a space-separated plain text format with each line repre-
senting one record. A single header line at the top of a CDX file denotes the fields:
SURT URL (Sort-friendly URI Reordering Transform), timestamp, original URL,
MIME type, HTTP status code, content digest/SHA-1 checksum, redirect URL (or
-), meta tags (or -), (W)ARC record compressed length, (W)ARC record file-offset,
(W)ARC filename.

An example CDX line looks as follows:
com,example)/jcdl 20160117113253 http://example.com/jcdl text/html
200 RKMS6XLYED4G8POFQUIN37WDEWYLD9Z - - 12345 67890 archive.warc.gz

For the default output format, we decided on JSON, a widely used format that
meets our objective of a reusable output and in addition to that nicely suits
ArchiveSpark’s tree-like data model. Each output JSON record includes a listing
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of all the metadata fields from the source CDX identifying the selected resource. If
no enrichments are applied, this would be the final output for our example record:

{
"record": {
"surtUrl": "com,example)/jcdl",
"timestamp": "2016-01-17T11:32:53.000+01:00",
"originalUrl": "http://example.com/jcdl",
"mime": "text/html",
"status": 200,
"digest": "RKMS6XLYED4G8POFQUIN37WDEWYLD9Z",
"redirectUrl": "-",
"meta": "-"

}
}

Enrichments are added to these JSON objects as additional keys next to record.
In case the WarcPayload enrich function is applied, as in our example above, the
(W)ARC headers, HTTP status information, HTTP headers as well as the raw bytes
of the payload will be added in:

{
"record": {...},
"recordHeader": {
"subject-uri": "http://www.example.com/",
"content-type": "text/html",
"creation-date": "20160117113253",
...

},
"httpStatusLine": "HTTP/1.1 200 OK",
"httpHeader": {
"Date":"Sun, 17 Jan 2016 10:32:53 GMT",
"Connection":"close",
"Content-Type":"text/html",
...

},
"payload": "bytes(length: 2345)"

}

Any other enrich function that depends on a value produced by WarcPayload,
e.g., payload, will result in the output being added as a nested value. If, for in-
stance, the dataset was enriched with StringContent only, which calls WarcPayload
implicitly as its dependency, the resulting JSON might look like this:

{
"record": {...},
"payload": {
"string": "<html>...</html>"
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}
}

In this case, the record and HTTP headers are not included, since the user
did not explicitly specify them to be part of the corpus. The payload, however,
is required to document the lineage of the string (the string representation of the
payload). This meets the traceability objective of Section 3.2.3 as every derived
value can be traced back through the cascades to its origin.

When the user is interested in both the original value as well its derivations, for
instance, when the records in the dataset are additionally enriched with the length
of their content string, a special underscore key (_) is introduced. The field with
this key retains the original value, like in the following example:

{
"record": {...},
"payload": {
"string": {
"_": "<html>...</html>",
"length": 2345

}
}

}

Other derivatives based on this string content would be placed next to the
underscore, just like length. In the same way, if the dataset was explicitly enriched
with both WarcPayload and StringContent, the byte representation of the payload
along with the header fields would have been placed next to string.

Finally, we consider the example of deriving named entities from the titles using
the HTML string representation. This example would involve an HTML parser,
which depends on StringContent to enrich the dataset with the required title value
nested under an HTML field, as well as a named entity extractor tool, which in
turn depends on the title to create a set of named entities. The lineage path of
this constructed example would look as follows:
payload.string.html.title.entities.

Remote Access

Web archives are often enormous collections with sizes in the order of hundreds of
terabytes and not every research institution has the capacity or the infrastructure
to maintain their own local Web archive. However, there are institutions, such as
the Internet Archive, that provide public access to their holdings. ArchiveSpark’s
modular concept of data specifications that encapsulate the logic to load metadata
and data records includes the ability to do this not only from local disk. Using
different protocols, such as HTTP, it also enables to load data from remote sources
like the Wayback Machine. To obtain the required metadata, queries can be made



92 Chapter 3 Data-centric View

to the Internet Archive’s CDX server 17, which provides access to the metadata
of every capture in the Web archive. For this particular case, we provide the
WaybackSpec with ArchiveSpark. Instead of paths for CDX and (W)ARC files, this
spec accepts a URL query along with a few other settings of the CDX server, e.g.:

WaybackSpec(url = "http://example.com/", matchPrefix = true)

An advantage of querying such a service to load metadata records is the ability
to prefilter records based on criteria supported by the query service. We note
that, although the retrieved metadata records from the CDX server do not include
explicit location information for the corresponding (W)ARC records, access to the
data records is possible through the Wayback Machine by using the unique tuple of
URL and timestamp. Similarly, other services can be incorporated if these values
are provided by them. Another example of this is retrieval systems like Tempas to
pre-filter records by keyword, which is demoed in [6] and used later in Chapter 4.
By not requiring an ArchiveSpark user to possess a local copy of the data, we open
up broader opportunities for data processing by multiple parties.

3.2.5 Benchmarks

We ran benchmarks to assess the efficiency benefits of exploiting the CDX dataset
when accessing Web archives. The run times of three different scenarios are com-
pared using ArchiveSpark and two baseline approaches: a scan-based approach using
pure Spark, and the Warcbase approach using HBase. For both baselines, we used
the tools provided by Warcbase to load and access the datasets (see Sec. 3.2.1).

Dataset

One of the services provided by the Internet Archive is Archive-It18. It is sub-
scription based and enables partner institutions to run selective focused crawls to
create and archive their own thematic and event driven collections. For our ex-
periments, we chose one of these collections, the Occupy Movement 2011/2012 19

collection, collected by the Internet Archive itself. Unlike a generic Web crawl col-
lection, this collection features a well-defined scope and is not too large, allowing
our benchmarks to be performed in a reasonable amount of time.

The collection contains a total of 17,478,067 (17.4 Million) captures with
10,089,668 (10.08 Million) unique URLs. It contains Web content crawled dur-
ing the time period Dec 3, 2011 to Oct 9, 2012, with a total storage of 470.9 GB
of compressed WARC files. The CDX data, generated by us, adds in 24.4 GB of data
size.

17https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
18https://archive-it.org
19https://archive-it.org/collections/2950

https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://archive-it.org
https://archive-it.org/collections/2950
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Experimental Setup

The experiments were performed on a Hadoop cluster running the Cloudera dis-
tribution20 (Hadoop 2.6.0-cdh5.4.9). The cluster consisted of 2 master nodes and
24 compute nodes with a total of 256 CPU cores, 2560 GB of RAM and 960 TB
of hard disk space.

The three systems we compared in the benchmarks were:

1. ArchiveSpark
2. Spark: Using Warcbase’s Spark library
3. HBase: Using Warcbase’s ingestion tool

For both ArchiveSpark and pure Spark approach, WARC files from the collection
were stored in Hadoop HDFS. The CDX files required by ArchiveSpark were gener-
ated using the Internet Archive’s CDX generator, which is available open source on
GitHub21. Generating the CDX files took 110 minutes, however, this is a one-time
process and is anyway a necessary step to enable access services like the Wayback
Machine. This dataset could have also been downloaded directly from Archive-
It. For these reasons, we consider this CDX generation step to be negligible in the
benchmarks.

In the HBase (Warcbase) approach, we had to first ingest WARC files into HBase.
Warcbase exploits certain properties of HBase to enable access to Web archives. For
instance, different captures of a crawled Web resource are stored as timestamped
versions of the same record in HBase. URLs are stored in an inverted, sort-friendly
format and are used as row keys for fast lookups with the MIME type serving
as a column qualifier. These design decisions allow for an efficient selection and
filtering process based on these three properties: URL, timestamp of capture, and
the MIME type. When additional fields are required, those need to be parsed
from the WARC records, either from headers or the payload, which are stored as
values in HBase cells. Due to limitations on the local disk space of our cluster,
we had to ingest the data into HBase from the WARC files stored in HDFS. As the
current version of Warcbase only supports reading in WARC files from the local file
system, we modified this system accordingly. The ingesting process took a little
over 24 hours with the resulting database containing a complete copy of the entire
collection.

For both the Spark and HBase approaches, we queried the data using Spark
and also used it to perform operations on the resulting data. All three systems
being compared ran with the same Spark configurations, using 10 executors with 4
GB of memory each. As the cluster was not exclusively available to us, with other
jobs running at the same time, the cluster load varied among the benchmarks.
To compensate for these variations, we ran every single benchmark a total of five
times.

We chose a common task among all benchmarks: select a subset of records
from the entire dataset, count the length of the string content of these records and

20http://www.cloudera.com
21https://github.com/internetarchive

http://www.cloudera.com
https://github.com/internetarchive
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Figure 3.13. Benchmark Times of ArchiveSpark vs. Spark vs. HBase
(both by leveraging Warcbase)

compute the sum of these lengths. This task is well-suited for the benchmarking
process since it features the extraction workflow supported by ArchiveSpark. It
involves a filtering phase to select the subset of records of interest, an enrichment
phase to augment records with content, as well as a derivation phase that enriches
the content with its string representation and length. We intentionally did not
apply any more sophisticated enrichments that involved third-party libraries as
those would only be applied on top of these results and would depend on the
performance of these external tools.

Scenarios and Results

The benchmark consisted of three different scenarios, starting with the most basic
filtering operation to only select records of a given URL, and ending with a more
sophisticated scenario involving a grouping operation to select the latest online
capture of all URL from a specific time period.

Scenario 1. First, we filtered the dataset for all records of one particular URL,
i.e., http://map.15october.net/reports/view/590/. In case of HBase, this is directly
supported and constitutes a simple row query. Therefore, it is understandably very
fast with the query taking between 1.4 and 4.4 seconds. However, when comparing
with the other approaches, the pre-processing time required for HBase as well
as the additional space requirements need to be kept in mind (see Experimental
Setup above). The times of all three approaches are illustrated in Figure 3.13a,
where the whiskers represent the fastest and slowest runs, while the box covers
the ones in the middle, with a centered line representing the median. As shown,
ArchiveSpark is about 100 times slower with times between 160.3 and 675.4 seconds,
but still around 10 times faster than pure Spark with times between 2522.6 and
2734.0 seconds. This is where ArchiveSpark’s incorporation of the CDX index leads
to performance benefits as it allows for the selective access of only records of the
given URL, while pure Spark performs a scan over the entire dataset and parses
every single record in order to find these records.
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Scenario 2. In the second scenario, instead of filtering by URL, we selected all
webpages, i.e., MIME type text/html, belonging to a specific domain, i.e., 15oc-
tober.net. The results are shown in Figure 3.13b. The HBase query performs a
targeted row scan again, this time for all keys starting with the specified domain
in its inverted, sort-friendly form, i.e., net.15october). However, this alone is not
sufficient as the scan would also yield rows starting with net.15octoberx, which is
not the correct domain. Therefore, an additional filtering step is required. Next,
the filter by MIME type text/html is also directly supported by HBase, since MIME
type is available as a column label. With times between 33.4 and 65.6 seconds,
the HBase approach is around a magnitude of 10 slower than in the first scenario.
ArchiveSpark comes closer to HBase with times between 349.2 and 379.1 seconds,
because both values to be filtered are part of the CDX and therefore, the task is
similar to the one in the first scenario. The pure Spark approach of a complete
scan is around 10 times slower than ArchiveSpark with times between 3737.7 and
3853.2 seconds.

Scenario 3. Finally, we selected the latest successful captures for all URLs
crawled in a specific month, i.e., Dec 2011. This is accomplished in two steps:
first, all captures from the desired time period (Dec 2011) and with a success-
ful response (status code 200) are selected and next, the latest capture for each
candidate URL is chosen. The pure Spark approach takes between 19432.0 and
20744.3 seconds in this scenario. This approach first scans through all records of
the dataset, followed by the step of identifying the latest capture of every URL
from the set of qualifying records. This may be more efficient when only a few
records of a dataset need to be filtered out. However, in scenarios, like this, where
users are interested in only a small subset of a large collection, it is very slow. In
the HBase approach, although HBase directly supports timestamp-based filtering,
which is performed on the versions of a URL, filtering on the HTTP status code
requires parsing the WARC record to read in the status code. Only then can the
latest successful captures be selected as an additional post-processing step. The
HBase approach takes between 12,117.7 and 12,971.5 seconds. For ArchiveSpark,
as both properties, timestamp and HTTP status, are contained in the CDX files,
the filtering as well as selection of the latest captures is entirely possible using just
the CDX. For that reason, ArchiveSpark leads in this benchmark as illustrated in
Figure 3.13c with times between 9639.6 and 9270.8 seconds. This illustrates how
the rich potential of ArchiveSpark’s selective access approach is unlocked when a
large fraction of the dataset can be filtered out based on available metadata.

3.2.6 Beyond Web Archives

Books, journals, and other traditional print media items are being made
available outside of physical libraries at a rapidly increasing pace. With the falling
cost of high-quality digitization technologies, organizations such as Google and
the Open Content Alliance are scanning books and other physical media on a
massive scale and digitized content providers, such as Internet Archive, The Digital
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Public Library of America, HathiTrust, and Europeana, are enabling access to rare
books, manuscripts, and other special collection materials otherwise available only
at geographically sparse locations. Open access publishing and Creative Commons
licensing are moving scholarly output in front of the paywall.

Given the sheer volume and variety of many of these collections, they may
very well be considered Big Data, but are still widely neglected in this field. While
digitized records can be read or viewed individually, their Big Data nature allows
for completely new and interesting ways of access and analysis. Instead of close
reading every single record, the digital collection can be filtered down by specific
features, enriched, and aggregated for useful statistics in a distant reading man-
ner [117] (see Sec. 3.2.1).

Similar to Web archives, all the above-mentioned data sources have an impor-
tant trait in common: they are maintained by libraries and archives, where records
are commonly organized in metadata indexes. As explained before, ArchiveS-
park leverages such metadata records as lightweight data proxies to provide an easy
and efficient way to process Web archives. Subsequently, third-party tools can be
easily integrated with ArchiveSpark to extract and/or derived new information to
be used in distant reading workflows that are described in a rather declarative
manner.

These workflows are not exclusive to the research of Web archives though. They
can, in fact, be applied to any digital collection. Examples include digitized books
and journals, which may be stored in the form of files in a specific data format
or made available through a public Web service and are therefore ready for be-
ing analyzed in a distant-reading manner with ArchiveSpark. With its ability to
integrate remote sources (see Sec. 3.2.4), ArchiveSpark can make use of any query
service, e.g., databases and search engines, that enables the retrieval of metadata
with pointers to the corresponding data records. Furthermore, we sought inter-
operability to reuse existing components of ArchiveSpark like tools that have been
bundled as modules to be used with Web archives. For instance, a sentiment anal-
ysis tool that has been prepared for use with ArchiveSpark for Web archives should
be usable with any text, regardless of whether it is part of a Web archive or a book
corpus or any other collection. By providing this flexibility, ArchiveSpark greatly
facilitates sharing of code among researchers, even across different disciplines.

With that in mind, the approach as shown in Figure 3.11 can be extended as
illustrated in Figure 3.14, generalizing ArchiveSpark’s two-step data access mech-
anism through metadata proxies. Together with the Medical Heritage Library
(MHL), we have created a reference implementation to showcase a scenario for
the work with ArchiveSpark beyond Web archives and evaluated the effectiveness of
sharing job definitions [10]. MHL is a digital curation collaborative effort among
some of the world’s leading medical libraries. It promotes free and open access to
quality historical resources in medicine. The goal of the MHL is to provide the
means by which readers and scholars across a multitude of disciplines can exam-
ine the interrelated nature of medicine and society, both to inform contemporary
medicine and strengthen our understanding of the world. The MHL’s growing col-
lection of digitized medical rare books, pamphlets, journals, and films number in
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Figure 3.14. ArchiveSpark’s selection and enrichment approach with vari-
able metadata and data sources. Dashed boxes illustrate the generaliza-
tions of the original approach for Web archives.

the tens of thousands, with representative works from each of the past six centuries,
all of which are available through the Internet Archive and discoverable through
an advanced full-text search interface22. The DataSpec for querying this search
system to efficiently access and study their holdings is available open-source23.

3.2.7 Conclusion and Outlook

Web archives are becoming more and more important as a scholarly source and
building a corpus from these archives is typically one of the first steps in any re-
search process. Since researchers working with these Web collections are often from
the humanities with no technical background, there is clearly a need to simplify
this extraction and derivation process. Therefore, we presented a number of objec-
tives and discussed why we deem them as essential for any system that supports
building research corpora from Web archives. These include simplicity in terms of
usage and extensibility, efficiency of access and traceability by documenting data
lineage for the purposes of reproduction and reuse.

With ArchiveSpark, we present a framework that effectively tackles these objec-
tives by making use of existing file formats, a functional approach to data processing
at scale and utilizing a widely deployed metadata index. By utilizing this index
that is a de-facto standard in the area of Web archiving, ArchiveSpark avoids having
to perform any pre-processing of the data or having to invest in additional storage
space. We also provide benchmarks that show how ArchiveSpark is more efficient

22http://mhl.countway.harvard.edu/search
23https://github.com/helgeho/MHLonArchiveSpark

http://mhl.countway.harvard.edu/search
https://github.com/helgeho/MHLonArchiveSpark
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than other alternatives when selecting records of interest based on the rich meta-
data already available in the metadata index. ArchiveSpark, however, is not the
best option when a data processing task needs to run across all or a large fraction
of the records in a Web archive.

Due to its modular architecture, ArchiveSpark serves as a universal tool for data
analysis and distant reading across different data types and sources, even beyond
Web archives. Its support for remote data sources, which can be streamed over
HTTP or other protocols, allow researchers to efficiently extract corpora from pub-
licly available, archives without needing a local copy of the complete dataset. By
facilitating the reusability of modules and tools, workflows written with ArchiveS-
park can be easily shared, even across disciplines and datasets.

To get users started more easily, we provide recipes for different analysis tasks
that can be easily customized for individual needs. Further, we constantly develop
new modules as well as extensions to ArchiveSpark to grow its acceptance and
showcase new use case scenarios. Available add-ons include a server instance that
enables to apply enrichments on a dataset through a Web service API as well
as a library to create a semantic layer consisting of RDF triples from archival
collections [11, 12]. The latter is presented in Chapter 4, the graph-centric view,
as its output connects resources through knowledge graphs. In the future, we plan
to grow the ecosystem around ArchiveSpark, not only by providing extensions but
also specialized indexes and services that can be employed for more efficient access
based on features like topics or entities contained in a document. ArchiveSpark is
fully open source, and we hope for many contributions from the broader community,
especially third-party tools to be provided with corresponding enrich functions to
be used in the ArchiveSpark pipeline.



4
Graph-centric View:

Exploring Web Archives Through Graphs

In the previous chapters, we have presented two views on the use of Web archives:
from a user’s perspective, which is focused on single documents, as well as from
a more comprehensive data-centric point of view, in which Web archives are con-
sidered big data collections. The remaining view is from a structural perspective,
focusing on the graphs spanning a Web archive. In the practical work with Web
archives, all threes views are often combined and complement each other. They
can be considered different zoom levels of an archive as introduced in Chapter 1.
The graph-centric view constitutes the broadest zoom in this model, which allows
looking at archived collections as a whole. This synoptic view allows to take the
relations among the contained documents into account. Most obvious when work-
ing with the Web are relations in the form of hyperlinks that connect webpages
through clickable texts or images. Just like these links are used to navigate the
live Web, the graph-centric view is key to navigate in a Web archive and find the
resources of interest.

In Chapter 2, we have shown with Tempas v2 how hyperlinks and their anchor
texts can be exploited for searching Web archives. As pointed out, without going
into details, the underlying model of that approach is, in fact, a graph. In that
particular case, we considered the number of pages linking to some target page in
a given time period as an indicator for the importance or popularity of the target
in this period, something that would be impossible to assess without zooming out
from an individual page level and taking their surroundings into account. The pages
constitute the nodes of a graph in this case, with the links being directed edges
among these nodes. Details and alternative ways to interpret links and construct
such a graph will be introduced in Section 4.1. Furthermore, we will look at a
semantic layer as a different type of graph, created on top of Web archive data,
before we end with an example study that integrates all three presented views in
a data analysis task, starting from the graph-centric perspective.

Finally, we want to allude to an open issue: the incompleteness of Web archives.
This inherent and unavoidable characteristic of these valuable collections should

99
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always be kept in mind when working with them but has not been sufficiently
studied yet. The representation of a Web archive as graph makes this especially
apparent, as destinations of links may not be archived yet and hence, lead to an
inconsistent state in the graph. Algorithms running on these graphs can be affected
by that, resulting in deviations of the outputs compared to the same algorithm
running on the full Web graph. In Section 4.2 we discuss this issue by means of
the PageRank algorithm and compare rankings of incomplete graphs imposed by
its results.

4.1 Web Archives as Graphs

A Web archive is a collection of pages p ∈ P , each with one or multiple versions
/ captures p = {cp,t1 . . . cp,tn} representing the page at different points in time
(t1 . . . tn), that is when the page was crawled and archived. Each capture ct repre-
sents a response of the Web server returned to the crawler at time t for a requested
page p. This can be a successful response including the contents of the page or
it could be a different status reply hinting at the page being offline or moved. In
the first case, hyperlinks or other information may explicitly or implicitly reveal
connections to other pages, while the latter case would likely result in a dead end
in most graph representation.

The most common type of Web graphs, also for Web archives, is a hyperlink
graph, with each capture modeled as set of contained links for a successful response
or the empty set otherwise: A capture ci ⊆ L of page pi is a set of links where
each link lijm ∈ L points from pi to another page pj, anchored by a text segment
am ∈ A (on pi), i.e., the text that can be clicked on, typically called anchor text.
In essence each link lijm connects a source page pi with the anchor text am to a
destination page pj.

One of the challenges when working with Web archives, also from the graph-
centric perspective, is their temporal dimension: Since the Web is dynamic and
pages change over time, links can change as well. Those link changes are consti-
tuted by either:

• a link is removed from a page,

• a new link is added to a page,

• the anchor text of a link changes,

• the target page of a link changes.

A change of the source would be considered the link to be removed from its original
page and added to another one. As we identify a link by its properties, i.e., an
edge consisting of a source and a target page as well as its anchor text, the result
of any of the four types of changes applied to a link would be considered a different
link. However, a link lijm being removed from page pi and added back later to it
with the same target page pj and the exact same anchor text am is treated as the
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same link again. Although those changes happen all the time, even multiple times
between two snapshots in an archive, we can only consider those changes than are
captured.

Besides Web graphs based on hyperlinks, we will look at other kinds of graph,
and focus on semantic knowledge graphs in particular. In contrast to hyperlink
graphs, these connect resources based on semantic relations, like those pages or
captures that mention the same person. For the creation of any of these graphs,
the holdings of a Web archive need to be processed in order to extract relations.
With ArchiveSpark (see Sec. 3.2) we presented a tool to do this efficiently. Now, we
will show an extension of ArchiveSpark to extract facts in the form of RDF triples
and construct a graph, called semantic layer, for Web archives. A semantic layer
constitutes another form of graph on top of a Web archive, which helps to get an
overview and identify connections among the contained documents.

Eventually, we outline an experiment in which we demonstrate how all three
presented views can be integrated in a data processing workflow to scale up to
thousands of pages. Starting from the graph-centric view by integrating Tem-
pas (see Ch. 2), we investigate exemplarily the increase of restaurant prices in
Germany when the Euro as a new currency was introduced, as reported by an
offline study [123].

4.1.1 Related Work

Works specifically on graphs in Web archives are very limited, but scientists have
looked into graph properties of the Web in general both on static [69, 70, 71, 72, 73]
and evolving graph [74, 75, 76]. However, it is worth looking at graphs in Web
archives as a special case of Web graphs, because archives are never complete
and not crawled with a particular attention to preserving the original Web graph
structures. At the same time though, they are our only source to analyze the Web
of the past and its evolution retrospectively. As a consequence, questions on the
completeness and consistency of graphs extracted from Web archives arise, such
as: How well do structures and properties of graphs extracted from a Web archive
resemble the graph of the actual Web and what is the impact of missing pages on
the behavior or results of graph algorithm, like PageRank? [68]. These aspects
have often been neglected in the past and need to be studied in more detail in
the future. Initial results on the issue on incompleteness of Web archives will be
touched upon by us in Section 4.2.

A specific type of graphs that researchers have investigated by means Web
archive data, is social networks. With SocGraph, Shaltev et al. [48] present an
exploration system for social relations among people and their temporal evolution,
extracted from the content of a Web archive. They describe methods for construct-
ing large social graphs from extracted relations and introduce an interface to study
their temporal evolution. While in their case, the graph is purely constructed of
people and relations, this semantic information could be connected to resources
in the archive where it is extracted from, described by available metadata, and in
this way provide a semantic layer based on the RDF/S data model on top of the
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raw archive [124]. In contrast to other user-centric solutions for exploring Web
archives (cf. Ch. 2, such a semantic layer could satisfy more complex information
needs by exploiting the expressive power of SPARQL [125] and its federated fea-
tures [126, 11]. By connecting resources through semantic knowledge, like social
data, it provides a graph-centric view on the archive. Further, semantic technolo-
gies allow to connect it with existing information available on the Linked Open
Data cloud [127], like DBpedia [128]. In that way, we are able not only to explore
archived documents in a more advanced way, but also integrate information, infer
new knowledge and quickly identify interesting parts of a Web archive for further
analysis.

A similar approach has been recently proposed by Page et al. [129]. In this
work, the authors build a layered digital library based on content from the Internet
Archive’s live music collection. Starting from the recorded audio and basic infor-
mation in the archive, this approach first deploys a metadata layer which allows
an initial consolidation of performer, song, and venue information. A processing
layer extracts audio features from the original recordings, workflow provenance,
and summary feature metadata, while a further analysis layer provides tools for
the user to combine audio and feature data, discovered and reconciled using in-
terlinked catalogue and feature metadata from the other layers. Similar to our
approach, the resulting layered digital library allows exploratory search across and
within its layers. However, it is focused on music digital libraries and requires the
availability of a large amount of metadata which is not usually the case in Web
archives. On the contrary, our approach focuses on entity-centric analysis and
exploration of an archived collection of documents.

Similar to Tempas for exploring a Web archive powered by an underlying hy-
perlink graph, user-friendly interfaces can be developed on top of semantic lay-
ers to facilitate their use for end-users as well. Systems like Sparklis [130] and
SemFacet [131] already enable the exploration of semantic repositories through a
faceted search interface [132, 133]. Other approaches translate free-text queries to
SPARQL [134]. Providing such interfaces on top of graphs, like hyperlink graphs
or semantic linked data graphs, connects the broad graph-centric view with the
user-centric view on Web archives, which highlights the synergies among them.

4.1.2 Hyperlink Graph Models

Following the notion introduced as introduced above, we now define different types
of graphs in a Web archive, based on hyperlinks. Let G = (V,E) be a graph with a
set of nodes / vertices vi ∈ V and a set of directed edges ejk = (vj, vk) ∈ E ⊆ V ×V
pointing from node vj to vk. For the Web or a Web archive, such a graph represents
the links connecting webpages: each node vi ∈ V represents a webpage and an edge
ejk ∈ E corresponds to a link from webpage vj to page vk. Two or more links on
the same page with the same destination and anchor text are considered to be
equal and only counted as one. However, it is possible that multiple links ljkm ∈ L
exist for the same edge ejk. Hence, the WebW can be modeled as an edge-labeled,
directed graph, with the labels being the set of anchor texts accompanied by a set
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of links: W = (G,A,L).
In Web archives, which have a temporal dimension, there are multiple ways to

extract a representation of the Web W as defined above for a time interval
[ta, tb]. As the graph G as well as the set of anchor texts A inW can be derived from
the set of links L, the temporal representation depends on how we extract the links
from the captures during the given interval: L ⊆

⋃
p∈P c ∈ {ct ∈ p|t ≥ ta ∧ t ≤ tb}.

While there exist various ways to define this set, we identified the following three:
1. Merge. The most straight-forward way is to merge all links that existed in

some capture during the time interval under consideration. Hence, the resulting
graph also includes links that existed in some capture but were deleted later in
another capture of the same page during the interval. Two or more links corre-
sponding to the same edge but labeled with different anchor texts at different time
points during the interval are all included:

Lmerge =
⋃
p∈P

c ∈ {ct ∈ p|ta ≤ t ≤ tb}

This is the most complete representation as it merges all links, regardless of whether
they still exist at the end of the interval or not.

2. Temporal Snapshot. A temporal snapshot or simply snapshot refers to a
single point in time as opposed to a period. For a given time interval [ta, tb], the
snapshot representation at time tb contains only links from the latest captures ct
for each page from that interval with t ≤ tb, i.e., links that actually exist at time
tb:

Lsnapshot =
⋃
p∈P

arg max
ct∈{ct∈p|ta≤t≤tb}

t

This model resembles the actual Web at time tb most closely and is best suited for
analyzing the Web or its structure. However, it is not ideal for information retrieval
as we miss the intermediate states in the considered time period corresponding to
the granularity of our index.

3. Emergence. Emergence refer to the links posted / created in a given time
interval [ta, tb]. In that respect it is as complete as a merged representation if all
consecutive intervals are considered. However, it is more space efficient as it does
not contain the captures already present before the considered interval:

Lemergence =
⋃
p∈P

c ∈ {ct ∈ p|ta ≤ t ≤ tb} \
⋃
p∈P

c ∈ {ct ∈ p|t < ta}

This representation has two major advantages for temporal search, which is the
reason why we chose Lemergence to build our indexes for Tempas v2 (see Sec. 2.1.5): 1)
only pages that are actively being linked in the queried time period are considered,
while pages that got frequently linked earlier but are not relevant anymore are
ignored even if the old links still exist on the Web, 2) the index size is significantly
reduced as each link is only included in one interval.
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Figure 4.1. Semantic layer describing an archived webpage using the
Open Web Archive data model [11].

4.1.3 Semantic Layers for Web Archives

As semantic layer, we conceive a graph representation of a Web archive that con-
nects semantic information extracted from the contents of archived webpages with
the metadata of the corresponding captures. An example of that is shown in Fig-
ure 4.1. Such a layer constitutes a way of describing metadata information about
the archived documents together with annotations with useful semantic informa-
tion, like entities, concepts and events, and publishing all this dataset on the Web
as Linked Data base on Semantic Web technologies by means of RDF triples [124].

In order to investigate the effectiveness of such a semantic layer in terms of
exploring an archive, we constructed the required triples for the Occupy Move-
ment 2011/2012 collection, which was already used to evaluate ArchiveSpark in
Section 3.2.5. For each version of an archived webpage, we stored its capture date,
its title, its mime type and its extracted entities, while for each distinct URL we
stored its total number of captures, the date of its first capture, and the date of its
last capture. As resource identifiers (URI) of the versioned webpages, we assigned
the corresponding location in Archive-It’s Wayback Machine.

The semantic layer contains 1,344,450 same-as properties, which means that
we avoided annotating and storing identical information for a very large num-
ber of versioned webpages. Moreover, 939,960 distinct entities (including con-
cepts and events) were extracted from the archived webpages. For each entity, we
stored its name (surface form), its URI, its position in the text, and its confidence
score. In total, the constructed semantic layer contains more than 10 billion triples
(10,884,509,868).
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Construction

For the construction of the semantic layer, we developed ArchiveSpark2Triples1,
an extension of ArchiveSpark (see Sec. 3.2) that outputs extracted or de-
rived information from the resources in a Web archive in the Notation3
(N3) RDF format based on the Open Web Archive data model [11]. In-
ternally, ArchiveSpark2Triples defines three types of documents: archived doc-
ument (instance of owa:ArchivedDocument), versioned document (instance
of owa:VersionedDocument), and same-as versioned document (instance of
owa:VersionedDocument, which constitutes a revisit-record, i.e., duplicate of a
previous capture). In more detail:

• An archived document represents all versions of the same webpage, i.e., all
records with the same URL. Its triples reflect the webpage as one unit, in-
cluding the number of captures in the Web archive, the timestamps of the
first and last capture as well as pointers to the corresponding versioned doc-
uments.

• A versioned document represents each individual capture of a webpage, i.e.,
every record of a webpage in the archive. The assignment of URIs to the
versioned documents is customizable and thus can be defined by the user. By
default, the triples of such a document only include the date of the capture
and its mime type (e.g., text, image, etc.). However, the framework supports
the extension of this by accessing and transforming any properties stored in
ArchiveSpark’s data model into triples. ArchiveSpark’s enrich functions are
supported as well in order to derive and seamlessly integrate information
from the content of a webpage, e.g., the title of a page, its links to other
pages, and its entities. For the extraction of entities, we used Yahoo’s Fast
Entity Linker (FEL) [135]. The enrich function required to make it useable
with ArchiveSpark is available under FEL4ArchiveSpark2.

• A same-as versioned document represents an already archived webpage that
has not changed from the previous capture. In this case, only a same-as
property pointing to the earlier record is created. The exact way in which
duplicates are identified is not part of the framework and can be defined as
part of the generation workflow. We use the digest/hash value that is part of
the CDX records for this, which allows to do it in an efficient way and avoid
unnecessary accesses to the archived content of the duplicates.

Finally, the vocabularies used by the produced triples can be defined as part of
the generation workflow and thus can be customized by the user as well.

1https://github.com/helgeho/ArchiveSpark2Triples
2https://github.com/helgeho/FEL4ArchiveSpark

https://github.com/helgeho/ArchiveSpark2Triples
https://github.com/helgeho/FEL4ArchiveSpark
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Efficiency

ArchiveSpark2Triples gains its efficiency from the efficiency of ArchiveSpark, which
is mainly a result of the two-step approach that is used for data loading and ac-
cess [9]. To recap Section 3.2, an archived collection to be used with ArchiveSpark
consists of two parts, the WARC records containing the actual data with headers
and payloads, and the CDX records containing only basic metadata, such as URLs,
timestamps and datatypes, which are considerably smaller in size. Hence, op-
erations that rely exclusively on information contained in the metadata can be
performed very efficiently, e.g., filtering out items of a certain type. Eventually, if
operations need to be performed on the actual contents, only the required records
are accessed using location pointers in the CDX records. ArchiveSpark2Triples ben-
efits from this approach, since records of a datatype other than text/html, such
as images and videos, can be filtered out very fast. In addition, all properties of
the archived documents and the majority of properties of the versioned documents
can be generated purely based on metadata and thus, very efficiently. In fact, the
payload is accessed only for applying enrich functions, e.g., for extracting the title
of a webpage, its entities, which is only done for the versioned documents without
duplicates, as described above.

The most expensive task in our pipeline is the entity extraction process, per-
formed by FEL4ArchiveSpark using Yahoo FEL [135]. To avoid extraordinarily long
runtimes, FEL4ArchiveSpark supports to define a timeout, which we set to 10 sec-
onds per record in our experiments. Additionally, we considered only webpages
with a compressed size of less than 100 KB, as larger file sizes are unlikely to con-
stitute a webpage and may indicate a malformed record. Although the described
steps are considered quite efficient, the actual time for the entire workflow depends
on the dataset size, the nature of the data as well as the used computing infras-
tructure. The Hadoop cluster used in our experiments for producing the semantic
layer consisted of 25 compute nodes with a total of 268 CPU cores and 2,688 GB
RAM. While the available resources strongly depend on the load of the cluster and
vary, we worked with 110 executors in parallel most of the time, which resulted in a
runtime of 24 hours for processing the entire collection of 474.6 GB of compressed
WARC and CDX files.

The execution time of a SPARQL query over a semantic layer mainly depends
on the following factors:

• The efficiency of the triple store hosting the semantic layer (e.g., in-memory
triple stores are more efficient).

• The efficiency of the server hosting the triple store (available main memory,
etc.).

• The query itself since some SPARQL operators are costly (like FILTER and
OPTIONAL). Moreover, if the query contains one or more SERVICE operators
(like the queries in Listing-4.2), then its execution time is also affected by the
efficiency of the remote endpoints at the time of the request.
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Effectiveness

1 SELECT ?journ (COUNT(DISTINCT ?page) AS ?num) WHERE {
2 SERVICE <http://dbpedia.org/sparql> {
3 ?journ a yago:Journalist110224578 }
4 ?page a owa:ArchivedDocument ;
5 dc:hasVersion ?version .
6 ?version schema:mentions ?entity .
7 ?entity oae:hasMatchedURI ?journ .
8 } GROUP BY ?journ ORDER BY DESC(?num)

Figure 4.2. SPARQL query for retrieving
the most discussed journalists in webpages of
the Occupy Movement collection.

By querying a semantic layer, we
can infer useful knowledge related to the
archived documents that is very labori-
ous to derive otherwise. The Occupy
Movement collection that our semantic
layer has been constructed for, contains
webpages related to protests and demon-
strations around the world calling for so-
cial and economic equality. A reasonable
query in this context would be for the
most discussed journalists mentioned on

the webpages of the collection, as shown in the listing in Figure 4.2. Notice that the
query counts the archived documents, not the versions, in order to avoid counting
the same page captured in different time periods multiple times. The query returns
Ralph Nader, Chris Hedges and Dylan Ratigan, as three of the most discussed jour-
nalists. Obtaining the same information from a pure keyword-based search, such
as Tempas, would not be as straight-forward, since keywords alone are not suitable
to formulating the considered information. Also, the system would only be able
to return a set of candidate pages, which a user would need to read in detail in
order to find the requested information. The possibility of formulating the complex
queries in expressive SPARQL makes a semantic layer well-suited for questions like
the above.

Further, due to the graph nature of linked data in a semantic layer, which
connects the contained information with corresponding documents of origin, the
approach also facilitates the navigation in an archive. On the other hand, without
a more user-friendly interface, querying and using a semantic layer is not appropri-
ate for end users like addressed in the user-centric view in Chapter 2. However, in
combination with a data processing tool like ArchiveSpark, it could serve for iden-
tifying entry points in the data-centric view (Ch. 3) for downstream data analysis
tasks, similar to the experiment presented in the next section.

4.1.4 Data Analysis by Incorporating Graphs

Finding the right entry points into a Web archive is crucial, not only for manual
exploration (cf. Ch. 2), but also for data analysis tasks. Due to the vast sizes of
Web archives in the order of hundreds of terabytes or even petabytes, scanning all
pages is impossible. In this respect, the graph-centric perspective on the archived
data as exploited by our temporal search system Tempas, can help to find the entry
points over time and reduce the dataset of relevance for the temporal data analysis
task. From the identified pages or captures, the archive can be scanned further.
Although this does not guarantee a full coverage of all interesting contents, it is
likely to detect relevant pages and thus, constituting an efficient way to create a
representative sample supporting significant analysis results. As an example, we
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Figure 4.3. Data analysis pipeline, starting from Web archive search
based on a temporal hyperlink graph with corresponding anchor texts,
over selective Web archive data access and extraction, to the aggregated
results presented to the user.

studied the evolution of restaurant prices in Germany during the time when the
Euro was introduced as Europe’s new currency.

Setup

Figure 4.3 outlines the steps performed in this experiment by integrating the three
views on Web archives, similar to the generic framework for systematic data anal-
ysis presented in Chapter 1 (Fig. 1.2). Starting from the graph-centric perspective
to identify suitable entry points, we transition to the data-centric analysis, before
results are aggregated and prepared to be presented to the user. In addition to
that, the user-centric view allows inspections at all stages of the pipeline.

Towards this, we integrate Tempas v2 (see Sec. 2.1) as an alternative metadata
provider for ArchiveSpark (see Sec. 3.2), while the archived webpages corresponding
to the search results are loaded from the Wayback Machine. Hence, a pre-filtering
of the Internet Archive’s Web archive is performed by keyword as well as time
through the Tempas index, based on the underlying hyperlink emergence graph as
described above (Sec. 4.1.2), before content is loaded for returned hits.

The logic for this data loading and integration step is defined in a separate
data specification module for ArchiveSpark, named Tempas2ArchiveSpark. It has
been published on GitHub3 together with the code that describes the pipeline
for this particular analysis as illustrated in Figure 4.3. Since metadata and data

3https://github.com/helgeho/Tempas2ArchiveSpark

https://github.com/helgeho/Tempas2ArchiveSpark
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records are loaded remotely, the study can be repeated or similar studies can be
conducted by anyone even without having a suitable dataset available.

Example Study

In this small example study we utilize ArchiveSpark to analyze menus of German
restaurants at the time when the Euro was introduced as the new currency in Eu-
rope and replaced the former German currency Deutsche Mark (DM) in 2001/2002.
According to many voices in Germany this resulted in increased prices particularly
in restaurants. In 2011 the German federal office of statistics published a report
in which they studied the effect of the Euro in various areas and categories [123].
According to that study, restaurant prices increased around the time of currency
reform by about 4% on average based on more than 700 examined restaurants.
However, while some restaurants even reduced their prices, others increased them
by up to 20% to 40%.

To get entry points into the archive for our analysis, we queried Tempas for the
keywords ’speisekarte’, which is the German word for menu, as well as ’restaurant ’
to find menus after one additional hop, in case it is not linked with the term for
menu in the anchor text. Both queries were issued for the time period from 2000
to 2003 and we considered the first 10 pages with 100 results per page, hence 1,000
hits each. As some of the returned URLs were found in multiple years, we started
off with 3,567 hits of URL / timestamp pairs for which we integrated contents
from the Wayback Machine By manually investigating a few of the result pages
on Tempas, we found that they often do not show the prices directly, but link to
subpages, such as for starters or main courses. Therefore, we extracted all links
under the same hostname and fetched the contents for those URLs as well, which
resulted in additional 6,028 pages. From each of these pages we extracted the
amounts of money mentioned on the pages as floating-point numbers prefixed or
suffixed with either DM, Euro, EUR or the Euro symbol e. To verify that we were
actually dealing with restaurant menus, we required the pages to mention the term
speise, which is the German word for meal / dish, and to contain at least three
prices. This filtering left us with menus for 49 entry point URLs.

After converting DM to Euro amounts with an exchange rate of 1 EUR =
1.95583 DM, we averaged the amount per currency and URL as well as among
URLs. Finally, we ended up with an average of 9.58 Euros and 15.24 DM = 7.79
Euros. That is an increase of 23%. Although this is higher than the average 4% as
reported by the study mentioned above, it is in the range between 20% and 40%
that was found in the statistics report. We can therefore consider it a reasonable
result, although not significant due to the limited number of analyzed menus. The
experiment shows, however, how Web archives can be used for studying social
issues with temporal anchor texts serving as entry points to access and analyze
these extremely big collection, which are otherwise almost impossible to process.
Thus, given a better domain knowledge of the studied subject and by investing
some additional effort, we should be able to produce interesting and significant
results with this approach.
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4.1.5 Conclusion and Outlook

Graphs provide a synoptic view on data. Already in Chapter 2 we have shown how
hyperlinks serve as effective cues for identifying temporally relevant documents in
a Web archive. Graph representations are the key to such methods by connecting
the otherwise individual captures in a Web archive. A labeled hyperlink graphs as
the most obvious and basic concept already goes a long way but also raises open
challenges. One of them is caused by the incompleteness in Web archives that we
will touch upon in Section 4.2.

Based on an emergence graph, as one of three presented types of hyperlink
graph models for Web archives, that powers our Tempas search engine, we have
outlined an example study of restaurant menus to demonstrate the possibilities
of integrating graphs in data analysis tasks. With 49 menus out of the initially
3,567 hits and 6,083 analyzed URLs, studying Web archives often is like finding a
needle in a haystack, though. This stresses the need of effective ways to identify
entry points for both manual exploration or close reading as well as data analysis
or distant reading tasks.

As an alternative type of graph, we believe that semantic layers are a first step
towards more advanced and meaningful exploration of Web archives. However,
for future work, user-friendly interfaces should be developed on top of semantic
layers for allowing end-users to easily and efficiently explore Web archives. Another
interesting direction is to study approaches for ranking the results returned by
SPARQL queries [136, 137].

4.2 On the Incompleteness of Web Archives

Most real-world graphs collected from the Web like hyperlink graphs and social
networks are incomplete or in other words their graph topology is not known in
entirety [138, 139]. Especially if not crawled for a particular purpose or subset,
but extracted from existing crawls, such as Web archives. The goal of Web archive
crawlers is to capture as much as possible starting from some seed set within some
national domain or even broader, given the available but limited resources [140].
Incompleteness is an inherent trade-off already in the design decision of such an
archive [141]. Complicating matters further, Web archives are often not constructed
in one piece but by merging partial crawls [8]. Additional reasons for the incom-
pleteness in Web archives include the restrictive politeness policies (i.e., robots.txt)
or random timeouts of Web servers. Several studies on this topic have shown that
incompleteness is indeed a common issue [96, 142, 143, 144], inevitably affecting
the graphs extracted from such crawls as well.

As a result, important graph properties and measures used for link analysis and
structural characterization like authority of vertices might be inherently flawed or
exhibit deviations from their original values. This is commonly observed where
users are typically agnostic to the incompleteness of the obtained graph, hoping
that the input graph is a reasonable representative sample of the underlying (un-
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seen) original graph. Some well-known measures for computing authority of ver-
tices or relative ordering of vertex authorities based on random walks are PageR-
ank [68] and its variants [145, 146, 147].

As an example, consider PageRank computed over the .gov Web graph
that we will analyze in detail later in this work. Here, the women.nasa.gov
(Women@NASA) page has a high PageRank value and is subsequently found
within the top 300 pages. However, on a closer examination we observe that most
of its PageRank is contributed by an in-link from the highly popular NASA home-
page (nasa.gov). If for some reason this particular in-link is not crawled, e.g., due
to a temporary downtime or the decision by NASA to exclude their homepage
from being crawled, this would cause a large decrease in its PageRank and hence
a severe rank deviation in the obtained crawl.

While one might argue that this is an unlikely case, since important pages enjoy
a high priority and are therefore commonly crawled, this is not the case in reality.
We found, by ranking pages in a graph constructed from a .deWeb archive in 2012,
first, based on their in-links and second, based on their PageRanks, that indeed,
even prominent pages are often missed. The graph considered only links that
emerged in 2012 (cf. Sec. 4.1.2) [6], but we compared against all pages archived in
that year. According to in-links only roughly 30% and according to PageRank less
than 20% of the top 1000 pages are not contained in the archive. The latter one is
questionable though, as our results will show, the ranking imposed by PageRank
on an incomplete graph is way less stable than we have commonly thought.

Therefore, we study the deviation in orderings/rankings imposed by PageR-
ank over incomplete graphs. Vertices in our input crawls are either completely
crawled (all neighbors are known) or are uncrawled (none of their neighbors are
known), which we refer to as ghost vertices. Based on this, the research questions
we ask are the following:

• RQ I : Do incomplete real-world graphs show a deviation in their PageRank
orderings when compared to full network topology?

• RQ II : How can we reliably measure the extent of such ranking deviations
for incomplete graphs?

Towards these, we perform extensive experiments on both real-world Web and
social network graphs with more than 100 million vertices and 10 billion edges.
We first establish empirically that real-world networks indeed show a deviation in
their PageRank orderings when not crawled completely compared to the com-
plete graph (RQ I). We observe ranking correlations (measured by Kendall’s Tau)
dropping down to 0.55 on Web graphs when only 50% of it is crawled. Second,
users and applications that use rankings induced by PageRank as a feature for
downstream ranking and learning tasks would naturally be interested in estimat-
ing such a deviation from the (incomplete) input graph at hand as a measure of
confidence. Therefore, as an answer to RQ II, we propose a measure called HAK
that estimates the ranking deviation of an incomplete input graph when compared
to the original graph [13, 14].
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4.2.1 Related Work

Ng et al. [148] analyzed the conditions under which eigenvector methods like
PageRank and HITS can provide reliable rankings under perturbations to the
linkage patterns for a given collection. In particular for PageRank they showed
that, if perturbed or modified webpages, i.e., links from the page are removed or
are not followed, did not have a high PageRank score in the original graph, then
the new PageRank score will not be far from the original. However, similar to our
results, they also sometimes observed strong deviations in the rankings imposed
by the algorithms when more important pages are perturbed. In their paper, they
discuss these only for the top 10 items in either of the considered rankings though.
We on the other hand, provide a quantitative evaluation using Kendall’s Tau for
a much larger fraction of the graph, which is crucial for the use of PageRank in
Information Retrieval scenarios where only a selected set of relevant documents are
ranked. Further, we provide a measure to estimate ranking deviations of vertices
in the given graph with respect to their orderings in the original unmodified graph.

Boldi et al. [149] also show the paradoxical effects of PageRank computation
on Web graphs. In contrast to our work though, they discuss a measure of effective-
ness for crawl strategies based on whether the graph obtained after a partial visit
is in some sense representative of the underlying Web graph for the PageRank
computation. Similar to our setting, they study how rapidly the computation of
PageRank over the visited subgraph yields relative ranks, measured by Kendall’s
Tau, that agree with the ones the vertices have in the complete graph.

In [150], unlike other approaches that sample vertices, the authors operate on a
given subset of vertices and consider the general problem of maintaining multi-scale
graph structures by preserving a distance metric based on PageRank among all
pairs of sampled vertices.

The other area of related work comprises graph sampling approaches which can
be broadly classified into two categories: traversal based methods [151, 152, 153]
and random walk based methods [138, 139, 154]. Graph-traversal based meth-
ods employ breadth-first search (BFS) or the depth-first search (DFS) algorithm
to sample vertices and are typically shown to exhibit bias towards high-degree
vertices [152]. Maiya and Berger-Wolf [153] compare various traversal based algo-
rithms and define representativeness of a sample while proposing how to guide the
sampling process towards inclusion of desired properties. On the other hand, the
random walk based methods are popular for graph sampling because they can pro-
duce unbiased samples or generate samples with a known bias [155, 138, 139, 154].
Other related works deal with estimating graph properties such as degree distribu-
tion estimation [138], clustering coefficient estimation [156], size estimation [157],
and average degree estimation [158]. However, most of these works assume a known
graph topology. Our work focuses on the unknown graph topology, an arguably
more general and useful scenario in Web graphs and social networks gathered by
crawlers.
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4.2.2 Preliminaries and Problem

Web

out=32

Figure 4.4. The neighborhood of a webpage in different
subgraphs of the Web: The out-degree differs as neighbors
become ghost vertices in the target graph or crawl. While
the target represents the desired subset to be crawled, the
crawl illustrates what has actually been captured, making
this an incomplete graph.

As originally conceived,
PageRank ranks ver-
tices of a directed graph
G = (V,E) where V and E
are the vertices and edges
respectively, based on the
topological structure of
the graph using random
walks [68]. The problem we
are addressing is attributed
to this random walk model
behind PageRank, rep-
resenting the authority or
importance of a vertex. For
some fixed probability α,
a surfer at vertex v ∈ V
jumps to a random vertex
with probability α and goes
to a linked vertex with
probability 1 − α. The

authority of a vertex v is the expected sum of the importance of all the vertices
u that link to v. Consequently, a vertex receives a high PageRank value and
is ranked at the top by ordering the webpages by importance when it is either
connected by many incoming edges or reachable from another important page.

We first define the notions of target graph, crawl and ghost vertices in the
context of incompleteness in graphs due to their collection process:

Definition 1 (Target graph). The subset of vertices (with the induced edges) of
a larger graph (e.g., the Web) that is theoretically reachable by a crawler given
its seeds, e.g., a domain, a top-level domain, or all webpages that belong to a
certain topic in case of focused crawlers. This graph would be available if every
link was followed and every page captured by the crawler, illustrated by the target
in Figure 4.4.

Definition 2 (Crawled graph or Crawl). The (incomplete) graph derived from the
set of webpages that have actually been visited by the crawler, discovered/linked yet
uncrawled pages are not included. This subset of the target graph is illustrated by
the crawl in Figure 4.4.

Definition 3 (Ghost vertex). Although a hyperlink on a crawled page points to
another page that belongs to the target graph, there is a chance the crawler never
visited and saved that page, i.e., it is not part the crawl. Such a page or vertex
is referred to as ghost vertex, shown by the gray vertices outside the crawl in
Figure 4.4.
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(a) (b) (c) (d)

Figure 4.5. Some graph structures: A darker color of the vertices repre-
sents a higher importance.

The deviation among two rankings induced by PageRank is a global objec-
tive, independent of a specific query. Hence, local or relevance-based measures
such as nDCG are not applicable here. The most common metrics to quantify rank
correlation are Spearman’s Rho and Kendall’s Tau, which are both similar as they
are special cases of a more general correlation coefficient and measure relative dis-
placements. In this work, we use Kendall’s Tau [159], ranging from [−1, 1], with 1
corresponding to a perfect rank correlation, 0 corresponding to no correlation and
−1 to a perfect inverse correlation. This is used to compare the correlation/devia-
tion of rankings computed on the vertices of a crawl GC with respect to that of the
target graph GT .

In Figure 4.5 we provide a few examples of possible graph structures, where
partial knowledge of the graph may affect the ranking returned by the PageRank
values. We remark that in the next sections, we will also provide empirical evidence,
supporting the fact that there exist ranking deviations in crawls of some real-world
graphs. In the first subfigure (a), we show the positive case of a DAG where the
partial knowledge of the graph will not cause any ranking deviations. As only the
topmost vertices shown here receive significantly more links than the others, these
are also the most important vertices. It is easy to see here that generating a crawl
from this structure by removing some vertices will not cause any significant changes
in the ranking orderings of the crawl. In the next subfigure (b), a backlink has been
introduced (left) that feeds back the importance of a top most page to a previously
unimportant page and its successors. This importance gets propagated through the
cycle which has been created due to the inserted backlink. In the next subfigure (c),
we illustrate the case of a crawl in which vertices are removed uniformly at random.
The chances here are that primarily unimportant vertices are removed, which would
still not cause severe deviations in the ranking orderings. Finally, if we remove any
vertex from the cycle as shown in subfigure (d), its succeeding vertices drastically
lose in importance and hence, the ranking among the pages in the crawl changes
noticeably.

4.2.3 The HAK Measure

The goal of this measure is to estimate quantitatively how reliable a crawl is with
respect to the relative ordering of the PageRank values on its vertices compared
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to the corresponding target graph. To this end, we first try to estimate the size of
the target graph: Given the crawled vertex set and the distinct hyperlinks on the
corresponding webpages, some of which are pointing to an uncrawled page (ghost
vertex), how big is the target graph or a subgraph that would potentially impact
or contribute to the PageRank values of the vertices in the crawl? We show that
for simple crawling strategies where it can be assumed that each vertex is part of
the crawl independently from all other vertices with some sampling probability ps,
the size of the target graph can be estimated in terms of a very simple property of
the crawled vertices, namely, the fraction of its crawled neighbors, referred to as
fidelity. Secondly, we try to estimate the impact exerted by the vertices in the
target graph on the crawled vertices, which we in turn use to estimate the number
of discordant pairs in the expected rankings, like in Kendall’s Tau.

Let C denote the set of vertices of the crawl graph and let n be the number of
vertices in this graph. The main steps in our computation are as follows:

1. Estimate the size of the target graph by using connectivity properties of the
crawl. Let T represent the set of vertices in this target graph.

2. Estimate the impact (as functions of PageRank) of the vertices in C.

3. Assume that the vertices in T exert similar impacts on other vertices.

4. Estimate the number of discordant pairs due to impacts exerted by vertices
in T − C on vertices in C.

Estimating the Target Graph

Let N denote the number of vertices in the target graph. In this section we will es-
timate the value of N under the simplified assumption that the crawl is constructed
by sampling vertices from the target graph independently and uniformly at random
with some probability ps. Note that if ps is known, one can easily estimate N as n

ps
.

We therefore first estimate ps from the connectivity of the crawl, using a property
that we refer to as fidelity: For any vertex v ∈ T , we define fidelity (γ (v)) of v as
the ratio of its immediate neighbors in C to its total out-degree (number of distinct
hyperlinks on a webpage pointing to vertex in T ). Let dc (v) count the number of
vertices v′ ∈ C reachable from v in one step. d (v) denotes the total out-degree of
v in the target graph. This results in the following definition:

Definition 4 (Fidelity). The fidelity of a vertex v ∈ T , γ (v), is given by γ (v) =
dc(v)
d(v)

and the average fidelity of all vertices in C is

γ (C) =

∑
v∈C γ (v)

n

With ps as the sampling probability, ps · N would be the number of vertices in
the crawl. Hence, using the observed average γ (C) and the observed size of the
crawl (n), we approximate N as n

γ(C)
.
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PageRank and Impacts

Despite its incompleteness, PageRank can be computed on the crawl graph by
treating the ghost nodes as dangling nodes. We use the personalized variant of
PageRank for this, starting from the available nodes in C as seeds (see Sec. 4.2.4).
Given this, for any vertex v in the crawl C, let π(v) denote the value computed
by PageRank and let N(v) denote the set of succeeding neighbors of v, reachable
from v in one step, hence d (v) = |N(v)|. PageRank of any vertex u can now
be considered as:

π(u) =
∑

v:u∈N(v)

π(v)

d (v)

Based on these considerations, we introduce a new property, referred to as
impact. The impact of a vertex v ∈ C on one of its neighbors u ∈ N(v) is defined
as:

Im(v, u) =
π(v)/d (v)

π(u)

Hence, the total impact on any vertex u ∈ V , received from all its incoming
edges, is 1

π(u)

∑
v:u∈N(v)

π(v)
d(v)

, which is always 1. This implies that any extra impact
of x on a vertex will increase its PageRank by x times the current PageRank.

The total impact of a vertex v, Im(v) is then defined as:

Im(v) =
∑

u∈N(v)

Im(v, u) =
∑

u∈N(v)

π(v)/d (v)

π(u)
=

1

d (v)

∑
u∈N(v)

π(v)

π(u)
.

We denote the average of impacts of vertices in C by Im(C), i.e.,

Im(C) =

∑
v∈C Im(v)

n

Estimating the Impact of Ghost Vertices

We next compute the impact that could have been exerted by the ghost vertices
on the crawled vertices, if the graph was complete and the ghost vertices existed.
In a setting like ours, where the (personalized) PageRank is computed from the
perspective of the known crawl (see above), the ghost nodes cannot have a bigger
impact on the crawl than previously leaked to them. Therefore, we build on the
assumption that the impact of each vertex in the complete target graph T is on
average the same as for the crawl: Im(C). Hence, we approximate the impact
exerted by ghost vertices only as follows:

I = |T − C| · Im(C) = n

(
1

γ (C)
− 1

)
· Im(C).

Some of this extra impact, generated due to ghost vertices, will be acquired by
some or all of the vertices in C, changing their PageRank values accordingly. This
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is what eventually will lead to the deviation in rankings, measured by Kendall’s
Tau as the number of pairs of each two crawled vertices (v, u) ∈ C×C for which the
order differs, i.e., discordant pairs, or is preserved, i.e., concordant pairs. Since HAK
is meant to predict the deviation as assessed by Kendall’s Tau, we also estimate
both these classes of pairs in order to compute HAK.

The impact of the ghost vertices can be divided among the vertices of the
crawl in several ways. For example, it can happen that the vertex with the lowest
PageRank receives the total impact, increasing its PageRank by a large factor.
In this case the number of discordant pairs is upper bounded by n−1. Moreover, we
know from [148] that vertices with low original PageRank scores will also have a
low PageRank value in slightly modified graphs. Therefore, the effect of the loss of
information because of incomplete crawls is observed mostly on the PageRanks
of the nodes higher in the original ranking. We checked experimentally several
variants for impact distributions and the best variant, which is affirmative with
our tests on real-world graphs, is to distribute the total impact I equally among
I vertices. Hence, the expected number of impacted vertices that belong to
the crawled set will be:

I = I · γ (C) .

In the worst case, each of these impacted vertices will result in forming a dis-
cordant pair with each of the unaffected vertex, resulting in a number of discordant
pairs of D = (n− I) · I. Based on that, HAK is computed with respect to Kendall’s
Tau as follows:

HAK =
#concordant pairs - #discordant pairs

# total pairs

=
n(n−1)

2
−D −D

n(n−1)
2

= 1− 4 · D

n(n− 1)
.

4.2.4 Experimental Setup

For the experiments we require the availability of crawls as well as the complete
target graphs that these crawls were derived from. This is necessary in order to
compute how the rankings on both graphs differ and to evaluate the performance of
HAK to estimate this deviation. In reality, however, neither obtaining the complete
target graph is possible nor the actual crawl policy can be determined accurately.
To this extent, we employ very large real-world graphs that themselves were in-
complete and considered them as target graphs by discarding edges that connect
to ghost vertices. With these graphs, we simulated crawls in order to generate new
incomplete subgraphs. For all these crawls we ran PageRank on both graphs
(crawl and target graphs) and compared the rankings using Kendall’s Tau to eval-
uate HAK.

The experiments were run on a computer cluster using Apache Spark and its
graph processing framework GraphX [160]. Loading the graphs locally on a single
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GOV DE UK Friendster

#V 301,128,778 247,641,473 39,454,746 68,349,466
#Vtarget 5,418,054 133,895,590 38,838,959 61,100,375
#E 2,111,229,433 14,795,732,782 936,364,282 2,586,147,869
#Etarget 180,657,788 10,085,242,536 928,939,162 2,575,600,737

Table 4.1. Statistics on the Studied Graphs (#V : original number of
vertices, #E: original number of edges, #Vtarget: target number of vertices,
#Etarget: target number of edges)

server was impossible with our available infrastructure because of their sizes of up
to more than 100M vertices and 10B edges, summarized in Table 4.1:

• GOV : This graph is based on crawled webpages provided by the Internet
Archive. It was extracted from the latest captures of all their archived web-
pages under the .gov top-level domain (TLD) from 2005 to 2013.

• DE : Like GOV, this .de TLD graph was also extracted from webpages
archived by the Internet Archive, crawled in 2012.

• UK : This .uk TLD crawl from 2005 is publicly available, already in the form
of a graph without corresponding webpages [73, 161].

• Friendster : Unlike the previous Web graphs, this is a publicly available so-
cial network, extracted from an extensive crawl of the former online platform
Friendster.com in June 2011 [162].

Additional experiments to generalize our approach and study its utility for a
wider range of different graph topologies by means of synthetic graphs are presented
in Holzmann et al. [13, 14]. These reveal the effect of incompleteness with respect
to specific properties and characteristics that are also partially reflected by the
studied real-world Web graphs.

Seed Selection and Crawling

Crawling can be considered a special case of network sampling from a more practical
point of view, where subsequent vertices can only be chosen from already discovered
ones or seeds. Maiya and Berger-Wolf [153] define this type of sampling as link-trace
sampling and give a nice overview of available models for this behavior. Naturally,
such approaches commonly exhibit BFS-like (Breadth-First Search) growth but
feature different strategies to prioritize or select the next vertices to be crawled.
These variations determine the probability of a vertex to be part of the final sample.

Although most crawlers employ BFS-like traversals, there are practical con-
straints like random timeouts and crawl restrictions on websites that make it hard
to model crawls perfectly. Therefore, we focus on the most impartial strategy,
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which is vanilla BFS, but explicitly produce partial crawls by dropping x% of
the vertices of the input graph (where x ∈ {10, 20, 30, 40, 50}). We refer to this
percentage as the block fraction and the remainder as desired fraction.

Statistics about the target graphs (Vtarget and Etarget), which are potentially
reachable from the seeds by not blocking any vertices are shown in Table 4.1. The
breadth-first search (BFS) starts from a set of seed vertices and runs until all
vertices are reached. A number of vertices according to the block fraction were
chosen uniformly at random and blocked/discarded before the BFS, simulating
vertices that cannot be crawled, e.g., due to robots.txt, slow response times, etc.

We found out that the most realistic seed selection strategy is to pick the most
important vertices as seeds. This is also the case for real crawls as these correspond
to more well-known pages. To identify such pages in our target graphs, we first ran
PageRank on them and constructed the seed set from the top 1%. This allowed us
to reduce the size of the large real-world graphs by pre-computing the actual target
graphs, consisting only of vertices that are reachable from the seeds (see Table 4.1,
Vtarget and Etarget). Interestingly, for the GOV and DE graphs, the size difference
of the target graphs compared to the originally provided graphs is huge, which
confirms common characteristics of these Web archive graphs, i.e., they are not
constructed in one crawl, leading to a fairly large number of unimportant vertices
(with no in-edges) that were discovered from crawls outside target graphs. The
UK and Friendster graphs on the other hand remained at almost the same size,
suggesting that they have already been created that way in the first place, which
proves our seed selection strategy actually realistic.

Evaluation strategy

The objective of this evaluation is to assess ranking deviations as quantified
by Kendall’s Tau (cf. Sec. 4.2.2) for rankings induced by PageRank, computed
on a complete target graph vs. an incomplete crawl and compare it against our
HAK measure, which is designed to yield values on the same scale. For this, we
focus only on high-ranked vertices, as these are typically more interesting in
most practical scenarios [148]: Firstly, because there is no tangible score difference
between the PageRank values of the tail vertices. Secondly, ranking deviations
in authoritative vertices are typically considered more severe than among the tail
ones. Since Kendall’s Tau makes no distinctions where rank reversals take place,
we compared the ordering among the top 30%, top 50% and top 70% vertices of the
crawl and target graph that appeared in both graphs according to the corresponding
PageRank values. This also helps us characterize where the rank reversals indeed
do appear.

The rankings for each of the graphs are computed based on the PageRank
values. While we employed the regular version PageRank on the crawl (with
added ghost vertices as sinks), we used the personalized variant of PageRank for
running it on the target graph. In this version, the algorithm is personalized to a
set of vertices, which constitute the starting points as well as teleportation desti-
nations in the algorithm [68]. The resulting PageRank values can be interpreted
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Figure 4.6. Ranking deviations measured and estimated for real-world
graphs and crawls for different fractions of uncrawled vertices.

as their importance with respect to these vertices or the domain represented by the
crawl. Both variants of PageRank ran for 30 iterations with the damping factor
parameter set to the frequently cited value of 0.85.

4.2.5 Observations and Results

In the following we describe our observations on ranking deviations caused by the
incompleteness of the underlying graphs or the Web archives datasets that these
graphs have been extracted from, respectively. Further, we assess the effectiveness
of our HAK measure in order to evaluate our assumptions on implications of in-
completeness as described in Sections 4.2.2 and 4.2.3. The computed deviations
with respect to Kendall’s Tau as well as estimated values based on HAK for the
crawls on all four graphs are presented in Figure 4.6.

We first focus on RQ I and justify the need for estimating ranking deviations
before employing PageRank for incomplete graphs. We clearly observe noticeable
ranking deviations of partial crawls with respect to target graphs as all four graphs
exhibit a decreasing Kendall’s Tau with increasing block fraction. Most signifi-
cantly is the drop to 0.55 for the GOV. However, the trends are very similar for all
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studied graphs. The least severe deviations or smallest decrease of Kendall’s Tau
is exhibited by the Friendster graph, our only social network graph, which does not
reflect a natural Web structure. We believe this is because the scale-free nature of
social graphs is much stronger than of Web graphs, and hence, they are less affected
by missing nodes [163]. We further observe that the ranking deviations increase
when we consider a smaller fraction of the most important vertices. This indicates
that most of the low rank vertices in the target graph do not flip their ranks with
the more important ones in the crawl, leading to a lower ratio of discordant pairs
to the overall total number of pairs. Hence, popular nodes or pages tend to remain
rather popular, even in incomplete graphs, however, the relative order among then
varies a lot.

We now turn to RQ II and evaluate whether the assumptions we have con-
structed our HAK measure on actually hold. We recall that one of the main as-
sumptions behind HAK is that each of the unseen or ghost vertices from the target
graph would exert the same fraction of impact (on average) to the crawled set as
the actual vertices in the crawl (cf. Sec. 4.2.3). We ensure this by constructing the
target graph such that each of its vertex has the same fraction of crawled neigh-
bors as the crawled vertices (computed by fidelity). This assumption would not be
followed by target graphs, if the ghost vertices had no edges back into the crawl
(backlinks).

However, our results support the effectiveness of HAK in the studied graphs
and therefore also validate our assumptions behind HAK. For instance, for the UK
graph we report an almost precise estimation (actual: 0.58, estimated: 0.61). In
contrast, the deviation in Friendster is less strong and slightly overestimated by
HAK (actual: 0.76, estimated: 0.66), which might be due to its different nature as
pointed out above and the consequent scarcity of backlinks. Overall, all the results
are promising though. We also notice that our estimates reflect more closely the
ranking deviations among the top PageRank vertices, which we believe to be more
interesting for most practical purposes than deviations in less important vertices
or the entire graph.

4.2.6 Conclusion and Open Challenges

We studied the problem of incompleteness in Web archives and the consequences
on derived graphs, leading to deviations in rankings imposed by graphs algorithms,
such as PageRank. We showed that these in fact do occur and can be drastic,
as shown in our GOV graph where the correlation among the rankings among
the complete graph and a crawl is only 0.55, measured by Kendall’s Tau. To this
effect, we proposed the HAK measure to estimate such deviations purely on the
crawl without any knowledge of the original graph, based on assumptions about
the impact of incompleteness in Web archives on graphs.

The fact that the results of PageRank can actually be discorded due to incom-
plete graphs should be considered when employing PageRank to order crawled
webpages, as it can lead to severe ranking deviations between the incomplete crawl
and the original target graph. The proposed HAK measure is an attempt to es-
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timate this deviation purely on the crawl without any knowledge of the original
graph, which turns out to be remarkably reliable.

In future work, we would like to generalize our approach further for a wide
range of different graph topologies. Towards this, we have been conducting more
comprehensive studies by means of synthetic graphs, which allow us to system-
atically analyze the effect of incompleteness with respect to specific properties or
characteristics of the underlying dataset [13, 14]. Also, we would like to investigate
the applicability of our measure to determine the confidence of results produced by
other algorithms on incomplete graphs, such as random walk algorithms similar to
PageRank.



5
Conclusion and Future Work

Web archives have been instrumental in digital preservation of the Web and provide
great opportunities for the study of the societal past and evolution. These archival
collections are massive datasets, typically in the order of terabytes or petabytes,
spanning time periods of up to more than two decades and growing. Due to this,
their use has been difficult as effective and efficient exploration as well as access
methods are limited. We have identified three views on Web archives, for which
we propose novel concepts and tools to tackle existing challenges: user-, data- and
graph-centric.

The natural way to look at a Web archive is through a Web browser, just like
regular users explore the live Web as well. This is what we consider the user-
centric view. The most common method to access a Web archives from a user’s
perspective is the Wayback Machine, the Internet Archive’s replay tool to render
archived webpages. Those pages are identified by their URL and a timestamp,
referring to a particular version of the page. In order to facilitate the discovery of
a page if the URL is unknown, we proposed different approaches to search Web
archives by keywords through external, temporal cues [2, 4, 6]. Another way for
users to find and access archived pages is by linking information from the past on
the current Web to the corresponding evidence in a Web archive [3, 5, 7].

Besides accessing a Web archive by closely reading pages in a browser, contents
can be analyzed through distant reading, too. In this data-centric view, webpages
are not considered self-contained units with a layout and embedded assets. Instead,
individual resources are processed and analyzed as raw data like text or images [8].
These data analysis tasks usually do not involve the whole archive, but only a
certain time period, specific data types, or other facets that can be filtered on
first. By taking this into consideration, we proposed a novel approach for building
research corpora from Web archives by incorporating lightweight metadata records
to process Web archives at scale in a very efficient manner [9, 10].

The third perspective, besides the user-centric and data-centric views, is what
we refer to as the graph-centric view. Instead of individual resources or pages,
the focus here is on the relations in Web archives. These are, in the most basic
case, hyperlinks among the archived pages [6]. By regarding contents and semantic
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information, more expressive graphs can be constructed to enable complex queries
and exploration patterns [11, 12]. This structural perspective allows completely
different kinds of analysis and exploration by forming synergies with both other
views. At the same time it exposes issues inherent in Web archives, such as their
incompleteness, that must not be neglected in practical use [13, 14].

5.1 Scientific Contributions

Towards tackling the raised challenged from above, we have presented the following
scientific contributions with respect to each of the three addressed views on the use
of Web archives:

- User-centric View: Browsing the Web of the Past.

• We identify that for typical access methods to Web archives, which are nav-
igational and temporal in nature, we do not require indexing full-text. In-
stead, meaningful text surrogates like anchor texts already go a long way
in providing meaningful solutions and can act as reasonable entry points to
exploring Web archives. By taking this into consideration, we present new
approaches to searching Web archives based on surrogates, such as tags
attached to social bookmarks, as well as temporal link graphs and corre-
sponding anchor texts. Departing from traditional informational needs, we
show how these can be effective in answering queries beyond purely naviga-
tional intents, like finding the most central webpages of an entity in a given
time period. We propose indexing methods and a temporal retrieval model
based on anchor texts, as well as demonstrate and discuss several interesting
search results using our approach, as implemented by our Tempas (Temporal
archive search) system.

• We show that most meaningful information about entities or objects, such
as software, like descriptions, metadata, documentation and source code, is
usually available online. Especially for these complex and evolving entities,
traditionally referenced metadata schemas are often not expressive enough to
capture their temporal states comprehensively. We show how Web archives
can be helpful in this respect, by serving as rich digital object representa-
tion to be linked from the live Web or cited in literature. Currently
though, we found that only 10% of the studied blog posts and roughly 30%
of the analyzed software websites are archived completely, i.e., all linked re-
sources are captured as well. Therefore, we propose Micro Archives to ensure
a coherent archived state among logically connected resources. With Mi-
crawler we present a modular solution to create, cite and analyze such Micro
Archives. We show the need for this approach and discuss opportunities as
well as implications for various applications.
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- Data-centric View: Analyzing Archival Collections.

• The Web has been around and maturing for about 25 years. The popular
websites of today have undergone vast changes during this period, with a
few being there almost since the beginning and many new ones becoming
popular over the years. Therefore, we conducted a longitudinal study,
spanning almost the whole period of the Web, based on data collected
by the Internet Archive starting in 1996, to retrospectively analyze how the
popular Web as of now has evolved over the past 18 years. For our study, we
focused on the GermanWeb, specifically on the top 100 most popular websites
in 17 categories, and present a selection of the most interesting findings in
terms of volume, size as well as age of the Web. We found that around
70% of the pages we investigated are younger than a year, with an observed
exponential growth in age as well as in size up to now. In addition to that, we
give detailed insights into our methodology, purely based on lightweight,
easily shareable metadata, to foster the replication of similar studies in
the future.

• The analytical use of Web archives at scale requires tools that provides effi-
cient access to the holdings for data scientists and researcher. We identified
five requirements based on practical needs, such as ease of use, extensibil-
ity and reusability. To meet these objectives, we propose ArchiveSpark, a
flexible framework for efficient, distributed Web archive process-
ing based on existing and standardized data formats commonly held by Web
archiving institutions. Performance optimizations in ArchiveSpark, facilitated
by the use of a widely available metadata index format, result in significant
speed-ups compared to existing approaches, without depending on any ad-
ditional data stores. At the same time, usability is improved by seamlessly
integrating filters and derivations with external tools, even for the work with
archival collections beyond Web archives.

- Graph-centric View: Exploring Web Archives Through Graphs.

• Graphs provide a synoptic view on Web archives and surface relations among
otherwise disconnected resources by taking structural information like hyper-
links into account. The benefits of this for search were already considered
before and shown with Tempas. We now discussed different models to extract
hyperlink graphs with respect to the dynamically changing Web. Further, se-
mantic layers were introduced as alternative graph model that offers advanced
query capabilities and allows for the integration with other knowledge bases.
Finally, we demonstrate the integration of the graph-centric view to nav-
igate in archives and identify entry points as part of a data analysis
pipeline.

• Most real-world graphs collected from the Web or extracted from a Web
archive like hyperlink graphs and social network graphs are incomplete. We
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draw the attention to this issue by investigating its effect on graph algo-
rithms. We first show that incompleteness actually has an impact on
graph algorithms like PageRank and measure how much a ranking in-
duced by these could deviate from the original unseen graph. Furthermore,
we present an attempt to approximate those rank deviations in the absence
of the complete graph. Our experiments on real-world graphs with more than
100M vertices and 10B edges showcase the impact of incompleteness in Web
archive graphs as well as the potential effectiveness of a prediction measure
for this effect.

5.2 Software Contributions

As part of the work presented in the previous chapters, the following tools have
been developed as proposed solutions to the addressed problems or to support the
conducted research:

Tempas. The temporal Web archive search
engine Tempas exists in two versions: v1 is based
on a social bookmarks dataset, v2 is based on
hyperlinks and corresponding anchor texts ex-
tracted from the German Web archive. In addition to a textual query, it allows to
select a time period to search in. Tempas is presented in detail in Section 2.1 and
can be accessed on http://tempas.L3S.de.

TimePortal. The TimePortal was developed as viewer to display
the results of Tempas v2. It has later been reused to contextualize
an archived website linked from an object reference on the live Web.
This is demonstrated for software mentioned in scientific publications
by the integration in http://swmath.org, described in Section 2.2.

Micrawler. This framework can be used to cre-
ate rich digital object representations, called Micro
Archives, as introduced in Section 2.2. It can be
customized to work with different Web archives and other services. Created Micro
Archives, consisting of a coherent set of captures that represent a common object
or entity can be shared and cited. Micrawler is fully open source and available on
https://github.com/helgeho/Micrawler, with a reference implementation de-
ployed under http://tempas.L3S.de/Micrawler.

ArchiveSpark. A general-purpose framework for
efficient data processing for Web archives and archival
collections based on Apache Spark, developed in coop-
eration with the Internet Archive. Details on the design
and architecture of ArchiveSpark are described and evaluated in Section 3.2. It is
freely available on https://github.com/helgeho/ArchiveSpark with a compre-

http://tempas.L3S.de
http://swmath.org
https://github.com/helgeho/Micrawler
http://tempas.L3S.de/Micrawler
https://github.com/helgeho/ArchiveSpark
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hensive documentation as well as multiple recipes to get common tasks around Web
archive processing done more easily. Additionally, we provide several extensions
and modules for ArchiveSpark, among others:

• ArchiveSpark-server. A server application that provides a Web ser-
vice API for ArchiveSpark to be used by third-party applications to in-
tegrate temporal Web archive data with a flexible, easy-to-use interface:
https://github.com/helgeho/ArchiveSpark-server

• ArchiveSpark2Triples. This library provides tools to convert ArchiveSpark
records from Web archives to RDF triples in Notation3 (N3) format. It was
used to create the semantic layer in Section 4.1.3: https://github.com/
helgeho/ArchiveSpark2Triples

• Tempas2ArchiveSpark. A data specification for ArchiveSpark to load re-
sults from Tempas and integrate corresponding captures seamlessly from the
Wayback Machine, like demonstrated by the data analysis experiment in Sec-
tion 4.1.4: https://github.com/helgeho/Tempas2ArchiveSpark

• MHLonArchiveSpark. This data specification for ArchiveSpark provides
the required components to work with journals from the Medical Her-
itage Library (MHL), like addressed in Section 3.2.6: https://github.com/
helgeho/MHLonArchiveSpark

Miscellaneous. In addition to the above listed tools, many
other open-source projects were created to provide different useful
utilities for the work with Web archives. The following selection and
more are available on GitHub https://github.com/helgeho:

• Web2Warc. An easy-to-use and highly customizable crawler that enables
the creation of little Web archives in WARC / CDX as used by ArchiveSpark.
It was used to acquire the data for our experiments in Section 2.2: https:
//github.com/helgeho/Web2Warc

• HadoopConcatGz. A splitable Hadoop input format for concatenated
GZIP files. With this format, compressed WARC files can be loaded more
efficiently. It is also used by ArchiveSpark to load WARC files without corre-
sponding CDX records: https://github.com/helgeho/HadoopConcatGz

• HadoopWebGraph. A Hadoop input format for graphs in the BVGraph1

format, which is widely used to compress large Web graphs, like the UK graph
in Section 4.2 [73]: https://github.com/helgeho/HadoopWebGraph

5.3 Future Work

Besides presenting novel concepts and tools to facilitate the use of Web archives,
we have also raised new challenges and paved the way for future work. A temporal
search system like Tempas is essential for navigating in these huge archival collec-
tions and to find suitable entry points or the desired temporal resources. However,
search based on surrogates like tags and anchor texts is not appropriate for every

1http://webgraph.di.unimi.it

https://github.com/helgeho/ArchiveSpark-server
https://github.com/helgeho/ArchiveSpark2Triples
https://github.com/helgeho/ArchiveSpark2Triples
https://github.com/helgeho/Tempas2ArchiveSpark
https://github.com/helgeho/MHLonArchiveSpark
https://github.com/helgeho/MHLonArchiveSpark
https://github.com/helgeho
https://github.com/helgeho/Web2Warc
https://github.com/helgeho/Web2Warc
https://github.com/helgeho/HadoopConcatGz
https://github.com/helgeho/HadoopWebGraph
http://webgraph.di.unimi.it
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use case scenario and all intents [45]. For instance, certain changes in a page that
may be of high relevance to a user, might not be reflected by external sources.
Hence, it is inevitable to look into alternative retrieval and ranking models in the
future as well. Also, different visualizations and ways to explore archives are subject
for further investigation [164]. Towards making Tempas a fully production-ready
system, also other challenges need to be tackled in the future in order to enable
the same convenience that we are used to in common search engines on the current
Web [165]. For instance, query suggestions and reformulations, which support the
users in expressing their information needs, are not available for archives yet.

Graphs have proven to be fundamental in exploring Web archives and the pre-
sented semantic layer is a first step towards more advanced and meaningful graph
representation by incorporating contents as well as external semantic information.
However, to effectively benefit from these approaches in the future, user-friendly
interfaces that facilitate the use for end-users need to be developed on top. Fur-
ther, the effect of traits specific to Web archives, like their inherent incompleteness,
especially on graphs, should be studied in more detail and taken into account in
future applications that are potentially affected, such as ranking [166, 137]. Other
properties and the evolution of the Web may have effects on the acquisition and
use of Web archives as well. What we have learned about its growth and size can
impact resource allocation strategies. The introduced notations and definitions
provide a solid foundation for comparing our findings on growth and aging against
different Web archive collections like national holdings of other countries [167, 168].

Another direction of future work will be on building infrastructures and growing
ecosystems around the presented software and tools. In terms of Micrawler, we will
explore case-specific implementations of the integrated services to be hosted with
partners, like persistence providers for assigning guaranteed permanent identifiers,
such as DOIs. We also want to establish a platform for sharing crawl specifications
and existing Micro Archives. In order to foster the data-centric use of Web archives,
we will continue to develop ArchiveSpark and promote its use especially in scientific
disciplines like Digital Humanities. The framework is fully open source, and we
hope for many contributions from the community to integrate third-party tools by
providing suitable modules. Besides, we also plan to grow the ecosystem around
ArchiveSpark by hosting it as a service and providing specialized indexes that can
be employed for an even more effective and efficient use of Web archives.
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