Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

BlogNEER: Applying Named Entity Evolution
Recognition on the Blogosphere*

Helge Holzmann!, Nina Tahmasebi?**, and Thomas Risse!

1 L3S Research Center,
Appelstr. 9, 30167 Hannover, Germany
{holzmann, risse}@L3S.de
2 Computer Science & Engineering Department,
Chalmers University of Technology,
412 96 Gothenburg, Sweden
ninat@chalmers.se

Abstract. The introduction of Social Media allowed more people to
publish texts by removing barriers that are technical but also social such
as the editorial controls that exist in traditional media. The resulting lan-
guage tends to be more like spoken language because people adapt their
use to the medium. Since spoken language is more dynamic, more new
and short lived terms are introduced also in written format on the Web.
In [I] we presented an unsupervised method for Named Entity Evolution
Recognition (NEER) to find name changes in newspaper collections. In
this paper we present BlogNEER, an extension to apply NEER on blog
data. The language used in blogs is often closer to spoken language than
to language used in traditional media. BlogNEER introduces a novel se-
mantic filtering method that makes use of Semantic Web resources (i.e.,
DBpedia) to gain more information about terms. We present the ap-
proach of BlogNEER and initial results that show the potentials of the
approach.

Keywords: Named Entity Evolution, Blogs, Semantic Web, DBpedia

1 Introduction

The introduction of new technology changes the way we express ourselves [2]. In
Social Media, like blogs, everyone can publish content, discuss, comment, rate,
and re-use content from anywhere with minimal effort. The constant availability
of computers and mobile devices allows communicating with little effort, few
restrictions, and increasing frequency. As there are no requirements for formal
or correct language, authors can change their language use dynamically. Under
these circumstances we expect people to adapt their language to the means of
communication by using more creative language and unconventional spellings.

* This work is partly funded by the European Commission under ARCOMEM (ICT
270239)
** This work was done while the author was employed at L3S Research Center

28

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

2 Holzmann, Tahmasebi, Risse

Also words which might otherwise have been reserved for use only in conversa-
tions between friends can be introduced in written text.

These changes lead to a more dynamic language where new and short lived
terms are introduced also in written format. Local as well as global language
trends can spread via forums on the Web to a larger audience. This shortened
gap between written “Web Language” and spoken language coupled with the
inherent dynamics of spoken language leads to the introduction of new terms
and high dynamics also in written language.

With the increasing efforts in documenting and preserving the public view
on certain events and topics like the Financial Crisis or the Olympic Games,
there is also an increasing need to make use of this content. To turn user gen-
erated content into valuable information requires a better “understanding” of
the content. A systems that is aware of this knowledge can support information
retrieval by augmenting the query term. Awareness of language evolution is in
particular important for searching tasks in archives due to the different ages of
the involved texts.

Language evolution is a broad area and covers many sub-classes like word
sense evolution, term to term evolution, named entity evolution and spelling
variations. In [I] we presented our approach for Named Entity Evolution Recog-
nition (NEER). NEER is an unsupervised method to find name changes without
using external knowledge sources. As an example consider Pope Benedict X VI,
formerly known as Joseph Ratzinger. NEER can detect those changes in a high
quality newspaper dataset that reports this evolution by analyzing co-occurring
terms.

In this paper we present a first extension of NEER towards “Web Language”
by adapting and applying the method to blog content. The language used in
blogs is often closer to spoken language than to language used in traditional
media [3]. BlogNEER, an extension of NEER that introduces a novel semantic
filtering method, makes use of semantic resources (here exemplarily DBpedia)
to gain more information about terms.

In the following section we present the related work in the field of named
entity evolution. In Section [3| we give an introduction to NEER and motivate
BlogNEER. Section [4] explains our novel filtering method utilizing external re-
sources from the Semantic Web. In Section [5| we describe our experiments and
show an example. Section [f] concludes the work and gives an outlook on future
work.

2 Related Work

Previous work on automatic detection of language evolution has mainly focused
on named entity evolution. The interest has mainly been from an information
retrieval point of view as search results can be affected by named entity evolution.

Berberich et al. [4] proposed a solution to this problem by reformulating a
query into terms prevalent in the past. They measure the degree of relatedness
between two terms when used at different times by comparing the contexts as

29

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

BlogNEER: Named Entity Evolution on Blogs 3

captured by co-occurrence statistics. This approach requires a recurrent compu-
tation each time a query is submitted as it requires a target time for the query
reformulations which reduces efficiency and scalability. The results presented in
this paper are “anecdotal” (to use the words of the authors) and thus do not
provide a basis for comparison. However, because of the promising results we
use the same method for defining a context.

Kaluarachchi et al. [5] propose to discover semantically identical concepts
(or named entities) used at different times. They discover these changing en-
tities using association rule mining by associating distinct entities to events.
Sentences containing a subject, a verb, objects, and nouns are targeted and the
verb is interpreted as an event. Two entities are considered semantically related
if their associated event is the same and the event occurs multiple times in a
document archive. The temporally related term of a given named entity is used
for query translation (or reformulation) and results are retrieved appropriately
w.r.t. specified time criteria. They present precision and recall for three queries
and evaluate only indirectly on the basis of retrieved documents.

Kanhabua et al. [6] define a time-based synonym as a term semantically
related to a named entity at a particular time period. They extract synonyms of
named entities from link anchor texts in Wikipedia articles using the full history.
The paper evaluates the precision and recall of the time-based synonyms by
measuring increased precision and recall in search results rather than directly
evaluating the quality of the found synonyms.

In more recent work, Mazeika et al. [7] consider semantically similar enti-
ties from different time periods. They extract named entities from the YAGO
ontology and provide a visual analytics tool to analyze the evolution of named
entities of the New York Times Annotated Corpus. No name changes are tracked
but the tool offers a visualization of the evolution of an entity in the relation to
other entities.

3 Named Entity Evolution Recognition

The NEER approach addresses the problem of automatically detecting named
entity evolution. It works unsupervised and without incorporating external re-
sources. This section gives an overview of NEER and its limitations on blog
data.

3.1 Definitions

We consider a term w; to be a single or multi-word lexical representation of an
entity at time ¢,. The context C,,, is the set of all terms related to w; at time ¢,.
Similar to Berberich et al. [4] we consider the most frequently co-occurring terms
within a distance of k words as the context, however, other contexts can be used.
We consider a change period to be a period of time in which one term evolves
into another. We consider temporal co-references to be different lexical rep-
resentations that have been used to reference the same concept or entity at the

30

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

4 Holzmann, Tahmasebi, Risse

different periods in time. Direct temporal co-references are temporal co-
references that are variations of each other with some lexical overlap. Indirect
temporal co-references are temporal co-references that lack lexical overlap on
the token level. A temporal co-reference class contains all direct temporal
co-references for a given named entity, denoted as coref, {wy, ws , ...}. Each
temporal co-reference class is represented by a class representative r which is
also a member of the class. For example, Joseph Ratzinger is the representa-
tive of the co-reference class containing the terms {Joseph Ratzinger, Cardinal
Ratzinger, Cardinal Joseph Ratzinger, ... }.

3.2 Overview of NEER

The major steps of the Named Entity Evolution Recognition (NEER) approach
are depicted in Figure [I| NEER utilizes change period for finding named entity
evolution. These periods are identified by detecting high frequency bursts of
an entity. Those are considered to indicate a change period. Texts from the
year around a burst are regarded for collecting the co-reference candidates by
extracting the relevant terms. These are used to build up contexts represented
as graphs. Based on the contexts four rules are being applied to find direct co-
references among the extracted terms. These are merged to co-reference classes
as follows:

1. Prefiz/suffix rule: Terms with the same prefix/suffix are merged (e.g., Pope
Benedict and Benedict).

2. Sub-term rule: Terms with all words of one term are contained in the other
term are merged (e.g., Cardinal Joseph Ratzinger and Cardinal Ratzinger).

3. Prolong rule: Terms having an overlap are merged into a longer term (e.g.,
Pope John Paul and John Paul IT are merged to Pope John Paul II).

4. Soft sub-term rule: Terms with similar frequency are merged as in rule 2,
but regardless of the order of the words.

Ultimately, the graphs are being consolidated by means of the co-references
classes. Afterwards filtering methods filter out false co-references that do not
refer to the query term. For this purpose, statistical as well as machine learning
(ML) based filters were introduced. A comparison of the methods revealed their
strengths and weaknesses in increasing precision while keeping a high recall. The
ML approach performed best with noticeable precision and recall of more than
90%. While it is possible to deliver a high accuracy with NEER + ML, training
the needed ML classifier requires manual labelling.

3.3 Limitations of NEER Applied on Blog Data

Tahmasebi et al. [3] showed that language in blog texts behaves differently than
traditional written language. Blog language is much more dynamic and closer to
spoken language than written language in traditional media. Therefore, we treat
blog texts differently than texts from newspapers.

31

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

BlogNEER: Named Entity Evolution on Blogs 5
Identifying Finding
Change Periods |-» Extract Text | NLPF ing - Context Creati . T - Filtering » Co-References
(Burst Detection) Co-references

v v

1. Pope Benedict XVI Benedict XVI
2. Pope Benedict - Joseph Ratzinger
3. Benedict XVI - Cardinal Ratzinger

4. Cardinal Ratzinger

5. Pope
6. Benedict

Fig. 1. Pipeline used to detect temporal co-references[I].

The machine learning filter, which delivered best results in NEER exper-
iments, achieved a precision of more then 90% by filtering out false detected
co-references. Applying this to blog data leads to a much wider contexts, con-
taining many unrelated terms due to the large amount of relatively low quality
texts. Therefore the NEER filtering methods would have a much lower effect.

NEER makes no use of external resources like DBpedia since the main de-
velopment goal was to apply on historical document collections. Incorporating
the Semantic Web allows us to filter out false detected names using semantic
information, which is reasonable when working with data from the Web, like
blogs.

4 Semantic Filtering Approach

Semantic Filtering is a novel a-posteriori filtering method for NEER incorpo-
rating the Semantic Web. With this approach we exemplarily use external data
from DBpedia to augment a term with semantic information. Employing these,
we are able to filter out names that do not refer to the same entity. Two terms
referring to entities of different types or categories can not be evolutions of each
other. A-posteriori means we apply this filter after applying NEER to our dataset
given a query term and one or more change periods. At this step we have access
to the NEER results which consist of a collection of indirect co-references and a
co-reference class for the query term, composing the direct co-references. Using
this filter, all co-references that could be identified as names for other entitites
will be filtered out.

The semantic filter incorporates semantic information from DBpedia which
are structured as resources. A resource on DBpedia is the structured repre-
sentation of a Wikipedia page, which is automatically extracted as described
by Bizer et al. [§]. While an ambiguous name can refer to multiple resources,
every resource has its own unique name and every name only points to one
resource directly. This is realized by using disambiguation resources. E.g.,
Apple_(disambiguation) is the disambiguation resource of the resource Apple
(the fruit) and Apple_Inc. Unlike this example, disambiguation resources do not
always have the ”disambiguation” suffix. However, every resource has proper-
ties, which either point to a textual or numeric value, or to another resource.

32

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

6 Holzmann, Tahmasebi, Risse

Disambiguation resources can be identified by the existence of disambiguation
properties that point to their corresponding unambiguous resources.

Other properties which are important for our work are the types of resources
as well as subjects, which can be conceived as categories. In addition to the
property relations (resource — property — value), DBpedia also provides the
inverse relations (value — is-property-of — resource). These can help to detect
ambiguous resources where the corresponding disambiguation resource points to
the ambiguous one (e.g., Apple (dismbiguation) disambiguates Apple).

By mapping a query term as well as all of its co-references (direct and indi-
rect) to DBpedia resources we can augment the terms with semantic properties.
These properties can help to filter out false positive results derived by NEER as
new names for the entity. It is important to mention that we only make use of
descriptive properties and will not utilize already known name evolution infor-
mation and co-references from DBpedia. In this paper we focus on a term’s types
and subjects, but also make use of redirects and disambiguations. Although, in
some cases redirects represent a name change as well by redirecting an old name
to its new name, we do not use this information explicitly. Hence, we treat all
terms separately, even if they redirect to the same resource, like there is no
redirection available (e.g., for Czechoslovakia and Czech Republic or Slovakia).

4.1 Disambiguation and Aggregation of Properties

To map a term to a DBpedia resource, we replace spaces with underscores and ap-
pend it to the DBpedia resource URI (e.g., for ”"Project Natal” the resource URI
becomes http://dbpedia.org/resource/Project_Natal). In case we are able to re-
solve a term to a resource we fetch all property relations as well as the inverse re-
lations and save them in a lookup table. In this table, every property gets indexed
twice, by the complete property URI (e.g., http://www.w3.org/1999,/02/22-
rdf-syntax-ns#type, short rdf:type) and by the name extracted from the URI
(e.g., type). In the lookup table, every property for a term points to a list
of values, either URIs or strings for textual/numeric values. By indexing the
property names in addition to the unique identifiers we are able to retrieve
a list of all types independently from the used ontology. This is important
since some resource have assigned same properties from different ontologies
(e.g., http://dbpedia.org/property/type in addition to rdf:type from the exam-
ple above). By indexing these using their name (i.e., type), we unify them to the
same property.

After mapping the found terms to their corresponding resources, we follow
four strategies to extend and disambiguate their semantic meanings. The first
strategy is to follow DBpedia redirections if present. The second strategy is to
explore disambiguation resources for ambiguous terms that do not redirect to a
disambiguation resource. The remaining two strategies disambiguate ambiguous
terms.

Redirection Strategy Redirections are realized on DBpedia by a redirection
property (i.e., http://DBpedia.org/ontology/wikiPageRedirects, short dbpedia-

33

BlogNEER: Named Entity Evolution on Blogs 7

owl:wikiPageRedirects). This is assigned to the resource that is supposed to
redirect to another. We leverage this by fetching the resource the property points
to (s. Figure. Redirects are followed recursively. During this procedure we fetch
and index all new found properties and aggregate them. The rationale behind
this is that, in case there is a redirection pointing to another resource, this is
supposed to give a better entity description. Therefore, it represents the same
entity and its properties belong to the entity as well.

redirects

Fig. 2. Follow redirections.

Ambiguation Strategy If a resource has an ambiguous meaning, it mostly
points to a disambiguation resource using the dbpedia-owl:wikiPageRedirects
property. In this case, we apply the first redirection strategy. However, there
are ambiguous resources that do not redirect. For instance, the resource Ap-
ple (i.e., http://dbpedia.org/resource/Apple) represents the fruit, even though
Apple is an ambiguous term. The disambiguation resource for Apple is Ap-
ple_(disambiguation), but there is no redirection between these two. Therefore,
Apple_(disambiguation) uses the dbpedia-owl:wikiPageDisambiguates property to
point to its non-ambiguous resources, like Apple (the fruit).

To discover ambiguous terms, we analyze all inverse disambiguation relations
of a resources and follow backwards if there is a relation originating in a resource
with the exact same name as the original term, but with the suffix ” (disambigua-
tion)” appended (s. Figure . Unlike for the redirection, we do not collect all
properties. Instead, we only keep the properties of the disambiguation resource,
because the original term might not the one we are interested in (e.g., Apple
fruit).

Apple

Apple (disambiguation)

Fig. 3. Redirect to disambiguation resource, in case it exist with the same name.

Direct Disambiguation Strategy If a disambiguation resource has been iden-
tified we need to decide for one of the suggested resources as a representation

8 Holzmann, Tahmasebi, Risse

for the entity name under consideration. In case one of the candidates proposed
by DBpedia is also a direct co-reference of the term we take this one as shown
in the example in Figure [The term we try to resolve in the example is Pope
Benedict. The corresponding disambiguation resource proposes all popes with
name Benedict up to XVI. Since Pope Benedict XVI is a direct co-reference in
the co-reference class of Pope Benedict derived by NEER we follow this resource
as described for our redirection strategy and aggregate its properties with the
properties that have been fetched so far.

Pope Benedict |

- = = —PO Pope Benedict V

Pope Benedict

Pope Benedict XVI
(direct co-reference)

Fig. 4. Disambiguate entity by following resource with the same name as a direct
co-reference.

Indirect Disambiguation Strategy For the disambiguation of terms for
which we do not have a direct co-reference as disambiguation candidate, we make
use of indirect co-references derived by NEER for that term. Using these indirect
co-references indy, inds, ...we form a term vector. Additionally, a term vector
is formed for each disambiguation candidate based on the property values of the
corresponding resource. These vectors consist of the frequencies of every indi-
rect co-reference occurring in the property values: (freq(ind;), freq(ind2), ...).
Similar to [9] we calculate the cosine similarity between two vectors to measure
which resource fits the term in our context best. That resource will be selected as
the semantic representation for the ambiguous term. This procedure is illustrated
in Figure [§

Apple (disambiguation)

>0

indirect co-references:

Apple (Fruit) | iPad
[COS 0_1] < MacBook
Microsoft

Apple Inc.
[cos 0.8] «——

Fig. 5. Disambiguate entity by following resource that is most similar to the indirect
co-references.

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

BlogNEER: Named Entity Evolution on Blogs 9

4.2 Filtering

After the disambiguation and aggregation of properties from DBpedia we pro-
ceed with the filtering. We consider the properties type and subject despite their
ontology or namespace (i.e., URI), as described in Section We treat DBpedia
under the open world assumption. That means the fact a resource does not have
a certain property does not mean that the corresponding entity does not have
the property either. The resource has perhaps just not been annotated with the
property. However, if a resource has a certain property, we consider this to be
complete. For instance, if a resource is annotated with types, we assume these
are all types it has and there is no type missing.

Similarity Filtering The first filter we apply to the result set of co-references
derived by NEER compares the similarity of the query term with its co-reference
candidates based on the their types and subjects from DBpedia. We compare the
set of types and subjects of the query term with sets of each co-reference, direct
and indirect. This only works if the query term or its corresponding DBpedia
resource respectively has been annotated with types or subjects at all. Otherwise,
this filtering method is not applicable. The same holds for the co-references. It
would be wrong to consider two term referring to different entities just because
one of them has not been annotated with types or subjects while the other one
has (open world assumption, s. above). In this case we treat them as correct co-
references for the query term and keep them in our result set. In case the query
term’s resource and the resource of the co-reference under consideration have
both been annotated with types or subjects we require them to have at least
one type and/or subject in common. To check this requirement, we compute the
intersections of their type sets as well as their subject sets. In case one of the
set intersections is empty, we consider the two terms as different and filter out
those co-references. Otherwise, we keep them in our result set and pass them to
the type filter.

Type Filtering Other than the similarity filter, the type filter considers hierar-
chies of types in addition to the types a resource is directly annotated with. For
instance, both Pope Benedict XVI and Barack Obama are persons (resources
of type dbpedia-owl:Person). Therefore, the similarity filter would not have fil-
tered out one of them as co-reference of the other. However, Pope Benedict XVI
is of type dbpedia-owl:Cleric while Barack Obama is annotated with dbpedia-
owl: OfficeHolder. Both types are sub-types of Person. Thus, the two terms refer
to different kinds of persons on DBpedia and do most likely not correspond to
the same entity.

To achieve this filtering we need to analyze the sub-class relations of all
types assigned to a resource. Each type on DBpedia is represented as an URI
that points to a resource of that type. To obtain the hierarchy of a type, we lever-
age the rdfs:subClassOf property (i.e., http://www.w3.0rg/2000/01/rdf-schema
#subClassOf) of the resource. This points to its super-type and allows us to

36

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

10 Holzmann, Tahmasebi, Risse

perform this procedure recursively until there is no rdfs:subClassOf property
available or no resource corresponding to a type’s URI exists.

After we have fetched the hierarchies for all types top-down, starting by a
type and fetching the super-types, we analyze them bottom-up. For all types
that the query term and its potential co-reference have in common we compare
all of their sub-types. For instance, for Pope Benedict XVI and Barack Obama,
having type Person in common, we compare their sub-types of type Person:
Cleric and OfficeHolder. As these are different we consider the two terms not
to be the same or referring to the same entity respectively and do not keep the
co-reference candidate in our result set. In case they are equivalent we proceed
with the next sub-type. This will be done recursively as long as both terms have
sub-types in common or until they are not annotated with further sub-types.

The open world assumption holds again if the terms under consideration have
a type in common, only one of them has been annotated with a further sub-type
though. As we cannot tell whether the sub-type is missing on the other DBpedia
resource or the entity is actually not an instance of that type, we do not filter
out that co-reference and keep the it in the final result set.

5 Experiments

For our experiments we created a Ruby implementation of NEER and added the
introduced extensions for BlogNEER. For the entity extraction we used a Ruby
implementation of the Lingua English Tagger by Coburn [10].

For the evaluation we created two datasets. The techblog dataset consists
of five popular tech blogs covering five years from 2008 to 2013, fetched from
Google Reader: TechCrunch, Gizmodo, SlashGear, Ubergizmo and GottaBeMo-
bile. For the general blog dataset we fetched the top 100 blogs from nine different
categories (sports, autos, science, business, politics, entertainment, technology,
living, green), based on the ranking of Technorati [I1], also from Google Reader.
In addition, we used the Blogs08 TREC dataset, described by Ounis et al. [12].

Prior to creating contexts with NEER we applied a frequency filtering to
avoid feeding NEER with too many noisy terms. Those terms often do not have
a corresponding DBpedia resource and thus they cannot be filtered out by using
the semantic filter with similarity or type filtering and remain as noise in the
end result. Applying the frequency filter lead to much better results by keeping
the contexts smaller.

To demonstrate the results of BlogNEER we use the term “Kinect” as an
example. “Kinect” is the name of a gaming accessory from Microsoft. During its
development it was known under the name ”Project Natal” until the announce-
ment of Kinect in June 2010. We used that month as the change period and
applied the frequency as well as the semantic filter to our results. The following
set of terms is a result containing both, direct and indirect co-reference without
semantic filtering:

37

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

BlogNEER: Named Entity Evolution on Blogs 11

Apple, Engadget, GameStop, Project Natal, Kotaku, Nintendo, Redmond,
USA Today, Microsoft Kinect, Microsoft

After applying the semantic filter (s. Section we get an improved result
set:

Project Natal, Microsoft Kinect

Due to the preliminary stage of our research, we are unable to compare
precision and recall. However, in recent experiments we already reached a recall
similar to the recall we achieved with our baseline, NEER on the New York Times
dataset [I]. Even though the precision was still lower due to noise, the semantic
filter helped with filtering out false positives as shown in the example above. In
case the noise consists of misspelled, informal or rarely used terms, which are not
known in DBpedia, we are not able to filter them out using semantic filtering.
In future work we will tackle this problem by using advanced frequency filtering
methods.

Our results also indicated how differently NEER behaves on blog data. Al-
though both datasets consist of blogs, we observed much less noise with the
general blog dataset specialized in certain categories than in arbitrary, unspe-
cialized and partly private blogs from the TREC blogs. Our experiments, even
if not yet final, already indicate the impact of frequency and semantic filtering.
We were already able to reduce the noise and achieve a constantly high recall.

6 Conclusions and Future Work

For applying the NEER method on the Blogosphere we proposed BlogNEER, an
extension to the original approach. BlogNEER uses a novel a-posteriori filtering
method incorporating the Semantic Web. The semantic filter applied to the
results of NEER increased the precision by making use of data from DBpedia.
Using properties like types and subjects (i.e., categories) we are able to keep
apart terms that refer to different entities. Therefore, we can filter out names
that refer to another entity than a query term and thus, can not be an new
name.

We presented a first evaluation and a simple example showed the potential
of BlogNEER. However, to further reduce the noise we will need to filter terms
a-priori before they are processed by BlogNEER. We are also planning on incor-
porating additional web resources in BlogNEER as well as making use of other
web specific feature, for instance tags.

References

[1] Nina Tahmasebi, Gerhard Gossen, Nattiya Kanhabua, Helge Holzmann,
and Thomas Risse. Neer: An unsupervised method for named entity evo-

38

Proceedings of the 3rd International Workshop on Semantic Digital Archives (SDA 2013)

12

2]
3]

Holzmann, Tahmasebi, Risse

lution recognition. In Proceedings of the 24" International Conference on
Computational Linguistics (Coling 2012), Mumbai, India, December 2012.
Y.H. Segerstad. Use and adaptation of written language to the conditions of
computer-mediated communication. PhD thesis, G7teborg University, 2002.
Nina Tahmasebi, Gerhard Gossen, and Thomas Risse. Which words do you
remember? temporal properties of language use in digital archives. In The-
ory and Practice of Digital Libraries, volume 7489, pages 32-37. Springer,
2012.

Klaus Berberich, Srikanta J. Bedathur, Mauro Sozio, and Gerhard Weikum.
Bridging the terminology gap in web archive search. In WebDB, 2009.
Amal Chaminda Kaluarachchi, Aparna S. Varde, Srikanta J. Bedathur, Ger-
hard Weikum, Jing Peng, and Anna Feldman. Incorporating terminology
evolution for query translation in text retrieval with association rules. In
CIKM, pages 1789-1792. ACM, 2010.

Nattiya Kanhabua and Kjetil Norvag. Exploiting time-based synonyms
in searching document archives. In Proceedings of the 10™ annual joint
conference on Digital libraries, JCDL 10, pages 79-88, New York, NY,
USA, 2010. ACM.

Arturas Mazeika, Tomasz Tylenda, and Gerhard Weikum. Entity timelines:
visual analytics and named entity evolution. In CIKM, pages 25852588,
2011. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2064026. URL http:
//doi.acm.org/10.1145/2063576.2064026.

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystal-
lization point for the web of data. J. Web Sem., 7(3):154-165, 2009.

A. Garca-Silva, M. Szomszor, H. Alani, and O. Corcho. Preliminary results
in tag disambiguation using dbpedia. In Knowledge Capture (K-Cap 2009)-
Workshop on Collective Knowledge Capturing and Representation-CKCaR,
2009.

Aaron Coburn. Lingua::EN:Tagger - search.cpan.org. (accessed October
27, 2009), 2008. URL http://search.cpan.org/perldoc?Lingua: :EN: :
Tagger.

Technorati Inc. accessed June 05, 2013, 2013. URL http://www.
technorati.com.

Tadh Ounis, Craig Macdonald, and ITan Soboroff. Overview of the trec-2008
blog track. In In Proceedings of TREC-2008, 2009.

39

http://doi.acm.org/10.1145/2063576.2064026
http://doi.acm.org/10.1145/2063576.2064026
http://search.cpan.org/perldoc?Lingua::EN::Tagger
http://search.cpan.org/perldoc?Lingua::EN::Tagger
http://www.technorati.com
http://www.technorati.com

	BlogNEER: Named Entity Evolution on Blogs
	Introduction
	Related Work
	Named Entity Evolution Recognition
	Definitions
	Overview of NEER
	Limitations of NEER Applied on Blog Data

	Semantic Filtering Approach
	Disambiguation and Aggregation of Properties
	Redirection Strategy
	Ambiguation Strategy
	Direct Disambiguation Strategy
	Indirect Disambiguation Strategy

	Filtering
	Similarity Filtering
	Type Filtering

	Experiments
	Conclusions and Future Work

