
An Analytics Tool for Exploring Scientific
Software and Related Publications

Anett Hoppe1(B) , Jascha Hagen2, Helge Holzmann3 , Günter Kniesel4,
and Ralph Ewerth1,3

1 Leibniz Information Centre for Science and Technology (TIB), Hannover, Germany
{anett.hoppe,ralph.ewerth}@tib.eu

2 Leibniz Universität Hannover, Hannover, Germany
jascha hagen@yahoo.de

3 L3S Research Center, Leibniz Universität Hannover, Hannover, Germany
holzmann@l3s.de

4 University of Bonn, Bonn, Germany
gk@iai.uni-bonn.de

Abstract. Scientific software is one of the key elements for reproducible
research. However, classic publications and related scientific software are
typically not (sufficiently) linked, and tools are missing to jointly explore
these artefacts. In this paper, we report on our work on developing the
analytics tool SciSoftX (https://labs.tib.eu/info/projekt/scisoftx/) for
jointly exploring software and publications. The presented prototype, a
concept for automatic code discovery, and two use cases demonstrate the
feasibility and usefulness of the proposal.

Keywords: Software reproducibility · Source code exploration
Cross-modal relations

1 Introduction

The open science movement works towards the general availability of scientific
insight and is considered one answer to the so-called “reproducibility crisis”
[2]. Science results are often generated by a combination of software, data, and
parameters, all of which contribute to the final result (and its interpretation).
The complexity of all these elements is hardly describable in a single article –
and often the publication does not allow the full reproduction of the achieved
results. In the line of work towards consequent reproducibility of scientific results,
there are three main tasks to be tackled: (a) motivate researchers to reproduce
past results; (b) develop novel ways for the integrated presentation of scientific
results; (c) develop tools which allow for exploration of existing scientific works.

The work at hand focuses on the two latter objectives. It presents a tool
which facilitates the examination of existing research involving software by joint
exploration of a scientific article and the respective source code. The prototype
allows the exploration of both in one interface, and the semi-automatic creation
c© Springer Nature Switzerland AG 2018
E. Méndez et al. (Eds.): TPDL 2018, LNCS 11057, pp. 299–303, 2018.
https://doi.org/10.1007/978-3-030-00066-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00066-0_27&domain=pdf
http://orcid.org/0000-0002-1452-9509
http://orcid.org/0000-0003-4811-6902
http://orcid.org/0000-0003-0918-6297
https://labs.tib.eu/info/projekt/scisoftx/


300 A. Hoppe et al.

of semantic relations between them. The software is extended by basic visuali-
sations. This kind of work is related to research areas, which have been active
for decades: (a) automatic code analysis, and (b) automatic analysis of scien-
tific publications. Solutions for automatic code analysis aim at generating textual
documentation [7], summarising code [8], or at generating visualisations [4]. Also
common is the generation of formal code models using semantic technologies [1]
or logical constructs as realised in tools such as JTransformer1. While there is
much work on linking code to other (textual) resources (e.g. traceability [3]), to
documentation [4], on the automatic understanding of scientific publications [5],
or on linking publications with software and archiving them [6], there has been
little work on joint analytics of scientific software and publications, yet [9].

2 SciSoftX: Scientific Software Explorer

The Scientific Software Explorer provides researchers with functionalities for
the exploration of external article-software ensembles and/or annotation of own
works for better comprehensibility. Its final version will provide functionalities
such as (a) manual annotation of article-software relations, (b) semi-automatic
discovery of relations, and (c) visualisations for relation exploration.

Fig. 1. Main window of the GUI: linked code references are highlighted in colour.
(Colour figure online)

2.1 Functionality

SciSoftX allows the user to open and simultaneously view a software project
and a publication (Fig. 1). Parsing and processing of source code is realised

1 http://sewiki.iai.uni-bonn.de/research/jtransformer/start.

http://sewiki.iai.uni-bonn.de/research/jtransformer/start


SciSoftX: Exploring Scientific Software and Publications 301

Fig. 2. Graph-based view on connections between software and publication. Red nodes:
mentions in publication; blue nodes: source code packages. (Colour figure online)

using ANTLR2 (Another tool for Language Recognition) that supports most
of the relevant programming languages, while publications are processed via
PDF.js3. The user can manually link code identifiers to relevant locations in
the publication. When the user moves the mouse over a linked identifier in the
publications, a tool tip shows the relevant source code positions.

Automatic Discovery of Code Identifiers and Snippets: At the cur-
rent stage, the tool contains a basic method for the detection of code-relevant
text snippets: It relies on the common convention of setting code elements in
monospace fonts. The found identifiers are used to search the code model pro-
duced by ANTLR, multiple finds are disambiguated based on vicinity. In a ran-
dom sample of 24 articles from computer science, the monospace-based linker
was able to correctly detect 89.9% of the links annotated by a human expert.

Manual Annotation of Links: As a facilitator of exchange between scientists
the tool also allows for the manual annotation of resources. In a step-wise process,
the user marks article snippets, code elements and annotates the established link
with one of the pre-defined labels. The created set of links can be exported to
an XML format and imported by an interested reader.

Visualisations: Graph-based visualisations illustrate relations between software
and publication on different levels of abstraction. Figure 2 shows an example
displaying the connections at the package (software) and page (publication) level.

2 http://www.antlr.org/.
3 https://mozilla.github.io/pdf.js/.

http://www.antlr.org/
https://mozilla.github.io/pdf.js/


302 A. Hoppe et al.

2.2 Use Cases

Use Case 1 – Reader-side: A researcher reads a publication that refers to a
blob of software and then tries to understand the structure and rationale of the
software. This time-consuming task can be supported by the automatic creation
of links between textual description and actual source code, and the visualisa-
tions provided by SciSoftX. The user can click on nodes in the visualisation or on
text elements that are highlighted in the publication and explore the implemen-
tation details, discover additional parameters, and understand the relevant code
part step by step. Furthermore, it is possible to manually add and save useful
information and metadata, which can help future users to explore the software.

Use Case 2 – Author-side: Paper authors can use SciSoftX to ensure their
software is easily understood, e.g. in a reviewing process or for re-use. Therefore,
they make use of the manual and automatic methods to annotate the semantic
relations between their paper and the underlying software and publish the anno-
tations. The visualisation of cross-modal relations can aid the authors (and the
reviewers) to decide whether all relevant code parts and parameters are covered
by the publication. In this way, the tool helps to evaluate the quality of the
software description in a paper.

3 Conclusion

Reproducibility is one of the major issues of today’s scientific landscape. In this
paper, we have reported on work in progress for an analytics tool that allows
users to explore relations between scientific software and publications. To this
date, the tool features simple mechanisms for detecting links between software
and publications which serve as a proof of concept. Future work will explore (a)
more powerful infrastructures for code analysis, (b) more sophisticated means
for text/image analysis, e.g. mapping diagrams and formulas to source code.

References

1. Atzeni, M., Atzori, M.: Codeontology: RDF-ization of source code. In: d’Amato, C.
(ed.) ISWC 2017. LNCS, vol. 10588, pp. 20–28. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68204-4 2

2. Baker, M.: 1,500 scientists lift the lid on reproducibility. Nat. News 533(7604), 452
(2016)

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of
information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6),
1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

4. Chen, X., Hosking, J.G., Grundy, J.: Visualizing traceability links between source
code and documentation. In: IEEE Symposium on Visual Languages and Human-
Centric Computing, Innsbruck, Austria, pp. 119–126 (2012). https://doi.org/10.
1109/VLHCC.2012.6344496

https://doi.org/10.1007/978-3-319-68204-4_2
https://doi.org/10.1007/978-3-319-68204-4_2
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1109/VLHCC.2012.6344496
https://doi.org/10.1109/VLHCC.2012.6344496


SciSoftX: Exploring Scientific Software and Publications 303

5. Constantin, A.: Automatic structure and keyphrase analysis of scientific publica-
tions. Ph.D. thesis, University of Manchester, UK (2014). http://www.manchester.
ac.uk/escholar/uk-ac-man-scw:230124

6. Holzmann, H., Sperber, W., Runnwerth, M.: Archiving software surrogates on the
web for future reference. In: Fuhr, N., Kovács, L., Risse, T., Nejdl, W. (eds.) TPDL
2016. LNCS, vol. 9819, pp. 215–226. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43997-6 17

7. Moser, M., Pichler, J.: Documentation generation from annotated source code of
scientific software: position paper. In: Proceedings of the International Workshop
on Software Engineering for Science, SE4Science@ICSE 2016, 14 May 2016–22
May 2016, Austin, Texas, USA, pp. 12–15. ACM (2016). https://doi.org/10.1145/
2897676.2897679

8. Nazar, N., Hu, Y., Jiang, H.: Summarizing software artifacts: a literature review. J.
Comput. Sci. Technol. 31(5), 883–909 (2016). https://doi.org/10.1007/s11390-016-
1671-1

9. Witte, R., Li, Q., Zhang, Y., Rilling, J.: Text mining and software engineering:
an integrated source code and document analysis approach. IET Softw. 2(1), 3–16
(2008). https://doi.org/10.1049/iet-sen:20070110

http://www.manchester.ac.uk/escholar/uk-ac-man-scw:230124
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:230124
https://doi.org/10.1007/978-3-319-43997-6_17
https://doi.org/10.1007/978-3-319-43997-6_17
https://doi.org/10.1145/2897676.2897679
https://doi.org/10.1145/2897676.2897679
https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1049/iet-sen:20070110

	An Analytics Tool for Exploring Scientific Software and Related Publications
	1 Introduction
	2 SciSoftX: Scientific Software Explorer
	2.1 Functionality
	2.2 Use Cases

	3 Conclusion
	References




